アスファルト混合物層の弾性係数に対する 温度補正の一考察

永江 祐1・東 滋夫2・藤波 潔3・松井邦人4

¹学生会員 東京電機大学大学院 建設工学専攻(〒350-0394 埼玉県比企郡鳩山町石坂)
²正会員 鹿島道路(株) 技術研究所(〒182-0036 東京都調布市飛田給 2-19-1)
³正会員 工修 東京電機大学 建設環境工学科(〒350-0394 埼玉県比企郡鳩山町石坂)
⁴フェロー会員 Ph.D. 東京電機大学 建設環境工学科(〒350-0394 埼玉県比企郡鳩山町石坂)

アスファルト舗装の支持性能はアスファルト混合物層の温度の影響を大きく受けることが知られている. アスファルト混合物層の温度は常に変化しており、時々刻々、日々、季節ごとにそのスティフネスは変化 することが知られている.通常、アスファルト混合物層の中央温度あるいは平均温度とスティフネスの関 係が提案されている.本研究では、アスファルト混合物層を細分割し、厚さ方向に弾性係数が異なるとい うモデルを用いてアスファルト混合物層の温度依存モデルを誘導している.従来のモデルの信頼性を検証 する.

Key Words : asphalt concrete, stiffness, temperature dependency, FWD, surface deflections

1. はじめに

たわみ性舗装の支持性能は、アスファルト混合物層の スティフネスの影響を大きく受ける.アスファルト混合 物層のスティフネスはその温度の関数であり、時々刻々、 日々、さらに季節変動もしている.アスファルトの温度 が増加すると、そのスティフネスは減少する.すなわち、 輪荷重に対する支持力が低下し、その結果、路盤や路床 に伝達する応力が増加する.粒状材は応力が増加すると スティフネスも増加するが、粘性土は逆に低下すると言 われている.それゆえ、アスファルト混合物層の温度は 直接的にあるいは間接的に舗装各層のスティフネスに影 響を与える.

支持力が温度に依存して時々刻々と変化することは舗 装への負荷が一年を通して一様でないことを意味してい る.対費用効果のより高い舗装の設計を目指すならば温 度の影響を設計過程で考慮することも必要である.舗装 の管理技術者にとっては、支持性能が温度により変化す るようでは扱いに窮する.場所や時間が異なっても比較 できるようにするためには標準温度への温度補正が必要 である.すなわち、舗装の原位置温度の推定と原位置温 度とアスファルト混合物層のスティフネスの関係を求め ることが必要である.そこで、本研究ではスティフネス と温度の関係に注目している.

林ら¹⁾は温度に対するアスコン弾性係数の補正係数を, FWD 試験データを逆解析して求めた弾性係数とアスフ

アルト混合物層の平均温度から、ジェオデシック関数を 用いてその関係を示している. 井上²⁾は平均温度と逆解 析して求めた弾性係数をプロットしている. また、Dong ら³⁾は弾性係数と温度との関係を E(T)=E2010^(20-T)として FEM の剛性マトリックスを作成し、1 セットの表面たわ みデータを用いてガウス・ニュートン法で逆解析を行い E_{20} とαを求めている. Lukanen ら⁴と Park ら⁵は LTPP のデータを用いて、逆解析弾性係数とアスファルト混合 物層中央の温度の関係を指数関数で表している. また, Magrshall ら⁹はテネシー州でセンサーを埋設した4種類 の舗装を構築し、FWD 試験とアスファルト混合物層中 央の温度 (℃:セルシウス温度) から,指数関数の回帰 式を用いて弾性係数と温度の関係を求めている. Salem ら⁷は LTPP のデータから同様に逆解析弾性係数とアス ファルト混合物層中央の温度との関係を求めている.指 数モデルでは、温度が無限大になると0に近づくが、負 の無限大になると弾性係数も無限大になる問題点もある. しかし、底を10あるいはeとする指数関数モデルが支配 的であることから、本研究でもこのモデルを用いてアス コン弾性係数と温度の関係を求めている. アスファルト 混合物層の温度は深さ方向に異なるので、本来、弾性係 数も深さ方向に変化していると思われる。本研究では、 アスファルト混合物層の弾性係数を深さ方向に一定とし て逆解析で求めた弾性係数を見かけの弾性係数と呼んで いる. この見かけの弾性係数は図-1 に示したように表面 温度上昇時と下降時では異なるとの指摘もある⁵⁾.また,

図-1 表面温度とアスコン弾性係数の関係⁵⁾

本研究ではアスファルト混合物層の弾性係数E & 2000パラメータ k_1 , $k_2 \& e$ 用いてモデル化している. このモデ ルは既往の研究^{23,37,7}におけるモデルと基本的に同じで ある. それらの研究のほとんどが、アスファルト混合物 層の弾性係数は層の中で一定と仮定し逆解析を行い、得 られた弾性係数とそのときの舗装温度との関係からパラ メータの値を決定している. Dong ら³⁰のように逆解析 で指数部を求めることも理論的には可能ではあるが、実 際計算すると収束性が非常に悪いことを確認している.

そこで、本研究では1年間に計測されたすべての表面 たわみデータを用いて、解析たわみと測定たわみの差の 自乗和の等高線を求め、その値が最小になるように未知 パラメータ k₁、k₂を推定し、その結果と他の提案式との 比較を行った.

2. 使用した試験データと逆解析結果

ここで使用するデータは、鹿島道路栗橋機械センター で24時間試験を行ったときに計測された、1994年10月 24,25日(10月データ)、1995年1月18,19日(1月データ)、 3月22,23日(3月データ)、8月8,9日(8月データ)のデ ータである.計測はいずれの場合にも1時間ごとに実施 されている.図-2に舗装断面、FWD 試験におけるたわ みセンサー位置とアスファルト混合物層内の深さ方向に おける温度センサー位置を示した。

本研究では、深さ方向の温度分布がほぼ一定の時刻を 選んで、アスファルト混合物層、上層路盤、下層路盤、 路床の4層構造として、BALMを用いて逆解析を行った. ここで、アスファルト混合物層(厚さ24.6cm)は、表層 (密粒、厚さ5.9cm)、基層(粗粒、厚さ10.3cm)、アス ファルト安定処理路盤(厚さ8.4cm)から構成されてい る. 文献8)で指摘されているように、アスファルト混 合物層を3つの層として逆解析を行うと、下部層の弾性 係数が上部層のものより大きくなるという逆転現象が生

図-2 舗装断面とたわみ・温度センサー位置

表-1 4層構造の逆解析弾性係数(単位: MPa)

	10月	1月	3月	8月
アスコン層	6,036	17,489	14,443	1,044
上層路盤	264	490	421	209
下層路盤	176	294	265	146
路床	92	96	91	85

じることから、ここでは安定処理層を含むアスファルト 混合物層、上層路盤、下層路盤、路床の4層構造で逆解 析を行っている.解析で得られた各層の弾性係数を表-1 に示す.アスファルト混合物層の見かけの弾性係数は予 測されるように、1月、3月では大きな値になっている. 上層路盤や下層路盤の弾性係数も大きな値になっている が、その理由は明らかではない.測定誤差の影響やFWD 試験データが動的なデータであるにもかかわらず、静的 に逆解析を行っていることも原因の1つと考えられる.

次に,**表-1**に示した上層路盤,下層路盤,路床の弾性 係数を固定して逆解析を行い,各時刻におけるアスファ ルト混合物層の見かけの弾性係数を求めた.

図-3は計測温度の日変化で、舗装の表面温度、下面温度、舗装厚中央の温度(中央温度)、深さ方向の温度分布の平均値(平均温度)である.表面温度が最大となる時刻と下面温度が最大となる時刻の間には3時間から6時間の差が見られる.アスファルト混合物層の中央における温度(中間温度)とアスファルト混合物層の平均温度はほぼ等しい.しかし、両者の温度が最大となる時刻は必ずしも一致しない.

図-4 は荷重載荷点直下のたわみ(D0)と逆解析の弾性 係数の変化を示している.同図から明らかなように1月 と3月のたわみデータにそれぞれ1箇所欠落がある.見 かけの弾性係数が最小となる時刻は D0 が最大となる時 刻と一致している.しかし,弾性係数が最小となる時刻

図-4 アスコン層の見かけの弾性係数とD0の日変化

図-5 評価関数 J の分布

は、平均温度や中央温度がピーク値に達する時刻と必ず しも一致しない、平均温度のピーク値の時刻と見かけの 弾性係数が最小となる時刻が異なるのは、弾性係数が温 度分布の影響を受け、深さ方向に異なっていることを示 唆している.そして、平均温度がほぼ同一となる時刻に おいて、D0の値が異なる場合がある.これは、平均温度 が同じでも深さ方向の温度分布が異なっていることが原 因であると考えられる. アスファルト混合物層の厚さが 厚いほど、温度分布の影響が顕著に現れるため、平均温 度が同じでも表面たわみはかなり異なることが予測され る. また, 同図から一日の中でも見かけの弾性係数が大 きく変動していることが分かる. 10月では、最小値が約 5,000 MPa, 最大値が約 15,000 MPa, 1 月では, 最小値が 約15,000 MPa, 最大値が約37,000 MPa, 3月では, 最小 値が約6,000 MPa, 最大値が約16,000 MPa, 8月では最 小値が約800 MPa, 最大値が約2,600 MPa となっている. このように、一日の間でもアスファルト混合物層の見か けの弾性係数の最大値と最小値の差も大きく変動してい ることが分かる.

3. 四季の変動を考慮した弾性係数の補正式

アスファルト混合物層の内部の温度は深さ方向で異なる. 測定された温度の最大値は57.6℃,最低温度は0℃である. 図-2 に示したアスファルト混合物層を10分割し,細分割層の中央における温度に対応する弾性係数は,式(1)の指数モデルで表すことができるものと仮定する.

$$E(T) = 10^{k_1 + k_2 \left(\frac{20 - T}{20}\right)} = E_{20} 10^{k_2 \left(\frac{20 - T}{20}\right)}$$
(1)

ここに、Tは細分割層中央の温度である.

 $k_1 \ge k_2$ の値が与えられると、弾性係数を計算することが可能である.また、 E_{20} はアスファルト混合物層の温度

が 20℃の時の弾性係数であり,式(1)に 7=20℃を代入すると, *E*₂₀=10^{k1}となる.

ここでは、10層に細分割したアスファルト混合物層と その下に上層路盤、下層路盤、路床の全13層モデルを考 える.上層路盤、下層路盤と路床の弾性係数は表-1の値 を用いるものとする.多層弾性解析を行い、表面たわみ を計算する.各時刻で計測されたたわみデータは1日24 回、年4回で計測されたデータ合計94セットのたわみデ ータ(2セットのデータは欠落)を用いている.また、 表面たわみは9点で測定しているので、評価関数を次の ように定義する.

$$J = \sum_{k=1}^{94} \sum_{i=1}^{9} \left\{ u_i^k - z_i^k \left(E(k_1, k_2) \right) \right\}^2$$
(2)

ここに, u_i^k はk番目のデータセットのセンサーiのたわ みである. $z_i^k(E(k_1,k_2))$ はアスファルト混合物層の温度分 布を考慮して深さ方向に弾性係数を変えて計算した表面 たわみである.

評価関数Jが最小になるように $k_1, k_2 \varepsilon$ 求めれば良い. 未知パラメータが2個あるが、これらが指数部に含まれ ているため逆解析が不安定になる傾向が強い.そこで、 ここでは k_1, k_2 の値を離散化し、徹底的な探索を行うこ とにした.まず、最初は3.69 $\leq k_1 \leq 4.69$ の範囲で刻みを 0.05、0.50 $\leq k_2 \leq 0.80$ の範囲で刻みを 0.01 とし、式(2)の 評価関数Jを計算した.その結果を図-5(a)に示す.同図 より、ほぼ最小値のある領域が確認できるので、さらに 小さな領域に着目し、さらに小さな刻みで領域を分割し た.着目した領域は3.79 $\leq k_1 \leq 3.99$ 、0.68 $\leq k_2 \leq 0.73$ であ り、 k_1 に関しては刻みを 0.02、 k_2 では刻みを 0.002 とし ている.図-5(a)と同様な操作で評価関数の等高線を描い たものが図-5(b)である.このとき、式(2)の評価関数 J が最小となるとき、 $k_1=3.91, k_2=0.706$ (図中の丸印の位 置)を得た.

\backslash	文献中の回帰式	$E = E_{20} \times 10^{k_2 \left(\frac{20-T}{20}\right)}$ への変換式
1	$E = 10^{3.91 + 0.706 \left(\frac{20 - T}{20}\right)}$	$E = 8128 \times 10^{0.706 \left(\frac{20-T}{20}\right)}$
2	$E = 10^{3.91 + 0.692 \left(\frac{20 - T}{20}\right)}$	$E = 8128 \times 10^{0.692 \left(\frac{20-T}{20}\right)}$
3	$E = 5767 \times 10^{0.0404(20-T)}$	$E = 5767 \times 10^{0.808 \left(\frac{20-T}{20}\right)}$
4	$E = 5772 \times 10^{0.0434(20-T)}$	$E = 5772 \times 10^{0.868 \left(\frac{20-T}{20}\right)}$
5	$E = 33525 \cdot e^{-0.058 \times T}$	$E = 10471 \times 10^{0.504 \left(\frac{20-T}{20}\right)}$
6	$E = 19163 \cdot e^{-0.053 \times T}$	$E = 6610 \times 10^{0.460 \left(\frac{20-T}{20}\right)}$
7	$E = 25598 \cdot e^{-0.053 \times T}$	$E = 8710 \times 10^{0.460 \left(\frac{20-T}{20}\right)}$

表-2 回帰式

4. 提案式の比較

図-6 は弾性係数と平均温度を全てプロットしたもの である.プロット数は欠落したデータが2セットあるの で,全94点である.これらのプロットを指数関数で表し た回帰式,3章で求めた回帰式と既発表の回帰式を表-2 に整理し,比較のためこれらの式の曲線を図-6に追加し た.①~④は国内で測定されたものであり、⑤~⑦は LTPP のデータを用いている.本図より国内のアスファ ルト混合物層は温度が低下すると,弾性係数が急速に増 加する傾向にある.

図-3 で見かけの弾性係数が最小と最大になる時刻で、 この見かけの値を用いた場合と、式(1)に3章で得られた 値 $k_1=3.91, k_2=0.706$ を代入して厚さ方向に弾性係数が変動する場合について、アスファルト混合物層下面の水平方向のひずみ ϵ_c と路床上面の鉛直方向のひずみ ϵ_c を計算した.その結果を表-3と表-4に記した.アスファルト混合物層の弾性係数が一定のときと厚さ方向に変動する場合でアスファルト混合物層下面のひずみ ϵ_c の差は最大で35%程度であるのに対して、路床上面のひずみ ϵ_c ではせいぜい20%程度の差があることが確認できた.

5. まとめ

アスファルト混合物層の内部で温度分布は一様では ないので、深さによって弾性係数も変わると思われる. しかしながら、既往の研究では弾性係数は層内で一定と 仮定し、中央の温度あるいは平均温度とこの弾性係数の 関係が提案されている.また、既往の研究⁵において舗 装の表面温度上昇時と下降時では弾性係数が異なるとの 報告もある.本研究では、アスファルト混合物層の温度 が深さ方向に変化するようなモデルを用いて、そこに含 まれる 2 個のパラメータの値を、FWD 試験データとそ のときのアスファルト混合物層の温度分布から求めた. その結果、以下のことが明らかになった.

- (a) 舗装の表面温度,中央温度,下面温度がピーク値に 達する時刻は大きく異なる.また中央温度と平均温 度の値はほぼ同じであるが,ピーク値が発生する時 刻は異なる.
- (b) D0 が最大となる時刻と見かけの弾性係数が最小と なる時刻は一致するが、平均温度が最大となる時刻 とは異なる.
- (c) アスファルト混合物層の見かけの弾性係数と平均温 度から求めた 2 個の回帰パラメータ k₁, k₂の値は

表-3 アスファルト混合物層下面のひずみ \mathcal{E}_{x} (×10⁶)

\mathbf{N}	見かけの	アスコン層の弾性係数	
	弾性係数	一定	変動
10月	最 小	105	91.7
	最 大	44.5	60.9
1月	最 小	40.8	30.3
	最 大	20.6	21.5
3月	最 小	77.3	62.1
	最 大	41.3	47.3
8月	最 小	299	257
	最 大	170	178

 k_1 =3.91, k_2 =0.692(1.2°C \leq T \leq 46.9°C),深さ方向弾性 係数が変動するモデルで求めた k_1, k_2 の値は k_1 =3.91, k_2 =0.706(0°C \leq T \leq 57.6°C)である.

- (d) *T*=20℃のときの弾性係数は、本研究では 8,128 MPa, 井上の値は 5,772 MPa, Dong の値は 5,767 MPa, 文献
 5) の結果は、MAX.のとき 10,471 MPa, AVE.のとき
 8,710 MPa, MIN.のとき 6,610 MPa である.
- (e) アスファルト混合物層の弾性係数が一定の場合と、 変動する場合とでは、アスファルト混合物層下面の ひずみ& で最大 35%程度、路床上面のひずみ& では 最大 20%程度の差が確認できた.

表・基層とアスファルト安定処理層を別々の層として 逆解析を行うと、しばしば工学的に受け入れがたい結果 となることが知られている⁸⁾. そこで、本研究ではそれ らを1層として逆解析を行っている. その弾性係数を用 いてアスファルト混合物層下面のひずみを計算したが、 その値の信頼性は明らかではない. アスファルト安定処 理層の弾性係数を精度良く推定して、その下面のひずみ を算出することは今後の課題である.

参考文献

 林 信也,東 滋夫,金井利浩,岡部俊幸:FWD 試験に おける温度補正システムの開発,土木学会舗装工学論文集, 第2巻,pp.95-104,1997.

表-4 路床上面のひずみ E, (×10⁻⁶)

\mathbf{N}	見かけの	アスコン層の弾性係数	
	弾性係数	一定	変動
10月	最 小	-212	-198
	最 大	-121	-137
1月	最 小	-119	-97.8
	最 大	-74.2	-70.5
3月	最 小	-185	-172
	最 大	-122	-124
8 月	最 小	-424	-408
	最 大	-291	-280

- 井上武美:アスファルト舗装の支持力特性の評価と修繕設 計に関する研究、(博士論文)、1994.
- Dong, Q., Matsui, K., Yamamoto, K. and Higashi, S.: Backcalculation of Temperature Parameters for Determination of Asphalt Layer Modulus, Proc. SPIE, Vol. 3393, pp.119-130, 2000.3
- Lukanen, E.O., Stubstad, R. and Briggs, R.C.: Temperature Predictions and Adjustment Factors for Asphalt Pavement, Publication No. FHWA-RD-98-085, Federal Highway Administration, June 2000.
- Park, D.Y., Buch, Neeraj, and Chatti, K.: Development of Effective Layer Temperature Prediction Model and Temperature Correction Using FWD Deflections, TRB Annual Meeting, 2001.
- Maqrshall, C., Meir, R. W. Welsh, M.: Seasonal Temperature Effects on Flexible Pavements in Tennessee, TRB Annual Meeting, 2001.
- 7) Salem, H. M., Bayomy, F. M., Al-Taher, M. G and Genc, I. H.: Using Long Term Pavement Performance Data to Predict Seasonal Variation in Asphalt Concrete Modulus, Transportation Research Record, No.1896, TRB, National Research Council, Washington, D.C., pp.119-128, 2004.
- 8) 神谷和明,東 滋夫,金井利浩:交通履歴のないアスファ ルト舗装の経年的な支持力変化に関する研究,土木学会舗 装工学論文集,第4巻, pp.53-60,1999.12.

A STUDY ON TEMPERATURE DEPENDENT MODULUS FOR ASPHALT CONCRETE

Tasuku NAGAE, Shigeo HIGASHI, Kiyoshi FUJINAMI and Kunihito MATSUI

The structural capacity of flexible pavements is greatly influenced by the stiffness of the asphalt concrete layer. The asphalt layer stiffness is a function of temperature and changes every hour through a year. The relationship between the stiffness of asphalt layer and its mean temperature has been presented in the exponential form. In this paper, an asphalt layer is broken into thinner layers and assigning temperature to these layers by using the conventional model. Then the parameters in the type model are determined by matching the surface deflections with FWD deflection bowl.