アスファルト混合物の粒度および二次転圧が 舗装のマクロテクスチャに及ぼす影響

玉井昭典¹・亀山修一²・笠原 $\ddagger 3 \cdot Anderson D. A.^4 \cdot 斎藤和夫^5$

1正会員 博士(工学) 金亀建設 技術営業部(〒791-3131 愛媛県伊予郡松前町北川原 79-1)

²正会員 博士(工学)北海道工業大学助教授 工学部社会基盤工学科

(〒006-8585 札幌市手稲区前田7条15丁目4-1)

³フェロー 工博 北海道工業大学教授 工学部社会基盤工学科

(〒006-8585 札幌市手稲区前田7条15丁目4-1)

⁴Ph.D. Professor, Civil and Environmental Engineering, Pennsylvania State University

(221 Transportation Research Building, University Park, PA 16802, USA)

⁵フェロー 工博 室蘭工業大学教授 建設システム工学科 (〒050-8585 室蘭市水元町 27-1)

表面処理を施した舗装を含む 24 種類のアスファルト混合物のマクロテクスチャを CTM によって測定し, 得られたデータから算出される MPD / RMS がマクロテクスチャの形状を表すことを明らかにした.室内 において 18 配合のアスファルト混合物を作製し,粒度とマクロテクスチャの関係について解析した.そ の結果,(4.75mm 残留量 / 0.15mm 通過量)がマクロテクスチャに大きな影響を及ぼすことが分かった. また,この値が小さいアスファルト混合物ではゴム輪による二次転圧によってマクロテクスチャの形状が 凸型に変化することを明らかにした.さらに,二次転圧の条件を変えて SMA の試験施工をおこない,試 験施工から得られた二次転圧回数とマクロテクスチャの関係と室内試験から得られた結果を比較した.

Key Words : Hotmixed Asphalt Concrete, Macrotexture, Gradation, Second Rolling, CTM, MPD

1. はじめに

道路と車両は路面を介して接していることから, 路面が有する特性は,道路利用者の安全性,快適性 およびコストに大きな影響を及ぼす.通常,路面特 性は路面プロファイルの波長によって特徴付けられ る.世界道路協会(PIARC)は,路面のテクスチャ を波長に応じてマイクロテクスチャ,マクロテクス チャ,メガテクスチャの3つに分類している¹⁾.

路面のマクロテクスチャは,波長が 5×10⁴~5× 10⁻²m の範囲であり,すべり抵抗,ころがり抵抗, タイヤ/路面の騒音などに影響を与える.特に,マ クロテクスチャはすべり抵抗の速度依存性に大きな 影響を及ぼすことが明らかにされており²⁾,近年 開発された国際摩擦指標 IFI は,スリップ速度 60km/h における摩擦を表す摩擦ナンバ F60 に加え, 舗装のマクロテクスチャから算出される速度ナンバ Sp で構成されている³⁾.

マクロテクスチャの測定方法は,サンドパッチ法, アウトフロー法,プロフィロメータ法に分類される. サンドパッチ法は,所定の容積の乾燥砂あるいはガ ラスビーズをストレートエッジにより舗装表面に広 げ,その面積から平均プロファイル深さ(MTD: Mean Texture Depth)を求める方法である⁴⁾.アウ トフローメータは,底面にゴムをつけた円筒を路面 に設置し,円筒を満たした水がゴムと路面の隙間か ら所定量排出されるまでの時間を測定する方法であ る⁵⁾.プロフィロメータ法は,光学式レーザ変位 計を用いて非接触で路面の凹凸(プロファイル)を 測定する方法である.レーザ技術およびデータを処 理するコンピュータの高度化にともない,近年では, プロフィロメータ法が広く用いられている. プロフィロメータ法は路面のプロファイルを測定 することから,サンドパッチ法やアウトフロー法よ りも多くの情報を得ることが可能である.マクロテ クスチャの評価にはプロフィロメータによって測定 されたプロファイルから算出される平均プロファイ ル深さ(MPD: Mean Profile Depth)を用いること が一般的である⁶⁾.

現在,舗装の長寿命化や道路利用者の安全性・快 適性の向上を目的として様々な配合のアスファルト 混合物が用いられている.アスファルト混合物の最 大粒径,粒度,空隙率と騒音やすべり抵抗などの関 係については様々な解析が試みられているが^{7),8)}, 騒音やすべり抵抗などに影響を及ぼす舗装のマクロ テクスチャとアスファルト混合物の粒度の関係につ いて検討した例は少ない.

また,アスファルト混合物は高温において流動し やすいことから,施工時の転圧方法や転圧回数も舗 装のマクロテクスチャに影響を及ぼすと考えられる. 通常,アスファルト混合物の施工に当たっては,鉄 輪ローラによる一次転圧の後,タイヤローラによる 二次転圧がおこなわれる.タイヤローラによる二次 転圧は,アスファルト層の深部まで締固めることを 可能とすることに加え,舗装表面を密にする効果が あると言われている⁹⁾.舗装表面が密になること は舗装のマクロテクスチャが変化することを意味す るが,タイヤによる二次転圧によって舗装のマクロ テクスチャがどのように変化するのか,アスファル ト混合物の配合によってマクロテクスチャに及ぼす 二次転圧の効果が異なるのかについては明らかにさ れていない.

本研究では,表面処理を施した舗装を含む 24 種 類のアスファルト混合物のマクロテクスチャをサン ドパッチ法と Circular Track Meter (CTM)¹⁰⁾によ って測定し,MTDと MPDの関係を明らかにすると ともに,測定プロファイルから得られる MPD と二 乗平均平方根(RMS)の比(MPD/RMS)とマク ロテクスチャの形状の関係について検討した.

また,室内において,同一のアスファルトと骨材 を用いて 18 配合のアスファルト混合物を作製し, 粒度とマクロテクスチャの関係について解析した. なお,供試体の作製に当たっては,現場転圧をシミ ュレートするために,ローラコンパクタ(鉄輪)に よる締固めの後,タイヤローラと同じ材質のゴムを 取り付たローラコンパクタによって二次転圧をおこ ない,ゴム輪による二次転圧がマクロテクスチャに 及ぼす影響についても検討した.

さらに,現場において二次転圧に用いるローラの

 $MPD_A = (MPD1 + MPD2) / 2$

種類と転圧回数を変えて試験施工をおこない,試験施工から得られた二次転圧回数とマクロテクスチャの関係と室内試験から得られた結果を比較した.

2. Circular Track Meter (CTM)

CTM は,半径 142mm の円形プロファイルを CCD レーザ変位計で測定する装置である¹¹⁾.プロ ファイルの長さは 891mm,サンプリング数は 1024 であることからサンプリング間隔は 0.87mm となる. 1 回の測定に要する時間は約 40 秒であり,短時間 でプロファイルを測定することができる.

CTM によって測定されたプロファイルを図-1 に 示すように A~H 区間(区間長 111.4mm)に 8 分割 し, 各区間の MPD と RMS を算出する.A~H 区間 の MPD は, 各区間の回帰直線と 2 等分されたプロ ファイルのピークの差である *MPD1* と *MPD2* の平 均値で表され¹²⁾, RMS はプロファイルと回帰直線

表-1 測定したアスファルト混合物

アスファルト混合物	作製	アスファルト	特徴
密粒度ギャップ	室内	改質 Ⅱ型	最大粒径 13mm 中央粒度
密粒	室内	ストアス 60/80	最大粒径 13mm 中央粒度
細粒ギャップ	室内	ストアス 60/80	最大粒径 13mm 中央粒度
細粒	室内	ストアス 60/80	最大粒径 13mm 中央粒度
SMA	室内	改質 Ⅱ 型	最大粒径 13mm 中央粒度
ホットロールド A	室内	ストアス 60/80	散布骨材:砂岩(13.2~ 9.5mm) 散布量 7.4kg/m ²
ホットロールド B	室内	ストアス 60/80	散布骨材:砂岩(9.5~ 8.0mm) 散布量 7.4kg/m ²
ホットロールド C	室内	ストアス 60/80	散布骨材:砂岩(8.0~ 4.75mm) 散布量 7.4kg/m ²
ショットブラスト A	現場	改質Ⅱ型	母体:密粒ギャップ 球径1.4~1.7mm 速度1m/min
ショットブラスト B	現場	改質Ⅱ型	母体:密粒ギャップ 球径1.4~1.7mm 速度2m/min
ショットブラスト C	現場	改質Ⅱ型	母体:密粒ギャップ 球径1.4~1.7mm 速度3m/min
ショットブラスト D	現場	改質Ⅱ型	母体:密粒ギャップ 球径2.0mm 速度1m/min
ショットブラストE	現場	改質Ⅱ型	母体:密粒ギャップ 球径2.0mm 速度2m/min
ショットブラストF	現場	改質Ⅱ型	母体:密粒ギャップ 球径2.0mm 速度3m/min
ニート工法 A	室内	ストアス 60/80	散布骨材:砂岩(8.00~6.75mm)
ニート工法 B	室内	ストアス 60/80	散布骨材:砂岩(6.75~4.75mm)
ニート工法 C	室内	ストアス 60/80	散布骨材:砂岩(4.75~4.00mm)
ニート工法 D	室内	ストアス 60/80	散布骨材:砂岩(4.00~2.35mm)
グルービング A	室内	ストアス 60/80	母体:密粒 幅3mm 深さ 4mm 間隔30mm
グルービング B	室内	ストアス 60/80	母体:密粒 幅3mm 深さ10mm 間隔30mm
グルービング C	室内	ストアス 60/80	母体:密粒 幅6mm 深さ 4mm 間隔30mm
グルービング D	室内	ストアス 60/80	母体:密粒 幅6mm 深さ10mm 間隔30mm
グルービング E	室内	ストアス 60/80	母体:密粒 幅9mm 深さ 4mm 間隔30mm
グルービング F	室内	ストアス 60/80	母体:密粒 幅9mm 深さ10mm 間隔30mm

ストアス60/80はストレートアスファルト60/80を表す.

の偏差の二乗平均平方根を表す.測定したプロファ イルの MPD と RMS は A~H 区間の平均値で表され る.なお,本研究では,1箇所において3回の繰り 返し測定を実施し,各測定から得られた MPD と RMS の平均値を以後の解析に用いた.

表面処理を含む様々なアスファルト混合物のマクロテクスチャの測定

ショットブラストやグルービングなどの表面処理 を施した舗装やすべり止め舗装として用いられてい るニート工法などを含む 24 種類のアスファルト混 合物を作製し(表-1),サンドパッチ法および CTM による測定をおこなった.なお,粗骨材には 砂岩を用い,アスファルトには表-1 に示したよう なスレートアスファルト 60/80,改質 II 型アスファ ルト(針入度 40 以上)を用いた.また,室内にお ける供試体の転圧にはローラコンパクタ(鉄輪)を, 現場における転圧には鉄輪およびタイヤローラを用 いた.

(1) MPD と MTD の関係

サンドパッチ法から得られた MTD と CTM で測 定されたプロファイルから得られた MPD の関係を 図-2 に示す.著者らは,1998年と1999年にアメリ カ航空宇宙局(NASA) Wallops 航空施設内の滑走 路において,2000年にはドイツの Sprenberg のテス トトラックにおいてのべ 69 箇所のマクロテクスチ ャをサンドパッチ法と CTM によって測定した¹³⁾. これらの調査から得られた MTD と MPD の回帰式 も併せて図-2 に示す.今回測定したアスファルト 混合物の MTD と MPD の相関は非常に強く,回帰 式の R²値は約 0.93 に達した.また,得られた回帰 直線と Wallops と Sprenberg の調査から得られた回 帰直線には大きな差は見られなかった.

CTM の測定データから得られた MPD と RMS の 関係を図-3 に示す.ニートとグルービングでは MPD と RMS の変動が大きいことから,ニートでは 散布骨材の粒径,グルービングではグルーブの幅, 深さによって MPD と RMS が大きく変化すること が分かる.一方,ホットロールドおよびショットブ ラストでは,散布骨材の粒径あるいはブラスト球 径・照射速度を変えても MPD, RMS に大きな変化

図-5 MPD / RMS の平均値,最大値,最小値

は見られなかった.密粒度,密粒度ギャップ,細粒 度,細粒ギャップ,SMA を 1 つのグループ(無処 理と呼ぶ)と考えた場合,無処理,ホットロールド, ショットブラスト,ニート,グルービングの各グル ープ内では,MPDと RMSの間に強い相関が見られ た.

図-4 MPD / RMS とテクスチャの形状

(2) マクロテクスチャの形状

WennikとGerritsenはMPDをRMSで除した値(MPD / RMS)はマクロテクスチャの形状と密接に関係 することを指摘している¹⁴⁾.例えば,図-4に示す ような上下対象の凹型と凸型の2つのプロファイル

を考える.前述したように,RMS は回帰直線とプロファイルの偏差の平均平方値であることから両者のRMS 値は等しくなるが,MPD は回帰直線からピークまでの高さで表されることから凸型プロファイルの MPD が凹型よりも大きくなる.したがって,MPD / RMS はマクロテクスチャの形状(凹凸度)を表すと考えられる.

無処理,ホットロールド,ショットブラスト,ニ ート,グルービングの MPD/RMS の平均,最大値, 最小値を図-5 に示す.グルービングは,他のアス ファルト混合物と比べ MPD/RMS が著しく小さい ことから,マクロテクスチャが凹型であることが分

アフファルト混合物											アスファ
	コ 1の	26.5	19.0	13.2	4.75	2.36	0.60	0.30	0.15	0.075	ルト量
開粒	下限	100.0	100.0	98.6	29.9	17.8	11.5	8.5	6.3	5.1	3.7
	中央	100.0	100.0	98.7	33.8	22.5	14.0	9.6	6.5	5.2	4.0
	上限	100.0	100.0	98.8	38.5	27.3	16.5	10.7	6.7	5.3	4.5
粗粒	下限	100.0	99.2	75.4	40.2	23.0	13.0	8.3	5.2	3.9	5.0
	中央	100.0	99.4	80.5	45.2	27.8	16.0	10.0	5.8	4.4	5.3
	上限	100.0	99.5	84.0	50.7	32.0	18.7	11.8	6.9	5.3	5.4
SMA	下限	100.0	100.0	98.5	39.3	27.3	22.3	16.8	13.0	10.7	7.1
	中央	100.0	100.0	98.5	40.3	30.0	22.6	16.8	13.1	10.8	6.8
	上限	100.0	100.0	98.5	41.5	32.7	22.6	16.5	13.1	10.7	6.5
密粒ギャップ	下限	100.0	100.0	98.7	36.6	31.9	21.9	13.6	7.2	5.4	4.7
	中央	100.0	100.0	98.8	39.4	35.0	23.1	14.5	8.2	6.2	5.1
	上限	100.0	100.0	98.8	42.3	37.9	25.7	16.1	8.9	6.7	5.5
密粒ギャップ(F)	中央	100.0	100.0	99.2	55.8	38.4	28.8	19.9	12.2	9.6	6.0
密粒	中央	100.0	100.0	99.3	63.5	43.1	24.5	14.7	8.3	6.2	6.2
密粒(F)	中央	100.0	100.0	99.3	62.5	50.1	34.5	21.6	11.3	8.5	7.0
細粒ギャップ	中央	100.0	100.0	99.4	67.9	58.4	45.0	28.3	14.1	10.4	7.5
細粒	中央	100.0	100.0	99.5	74.5	57.0	32.4	18.8	9.9	7.2	7.3
細粒(F)	中央	100.0	100.0	99.7	82.6	72.3	52.1	32.2	16.0	11.8	8.5

表-2 アスファルト混合物の粒度およびアスファルト量

かる.一方,ホットロールド,ショットプラスト, ニートの MPD/RMS は無処理よりも大きいことか ら,凸型のマクロテクスチャと判断できる.また, 無処理の MPD/RMS のレンジは約1.1~1.5 であり, ニート,ショットプラスト,グルービングよりも大 きくなった.したがって,アスファルト混合物の配 合は,マクロテクスチャの形状に大きな影響を与え と考えられる.

4.アスファルト混合物の配合および二次転圧 がマクロテクスチャに及ぼす影響

(1) 供試体の作製およびマクロテクスチャの測定

アスファルト混合物の配合とマクロテクスチャの 関係を解析するために,同一のアスファルトと骨材 を用いて表-2 に示すような 18 配合アスファルト混 合物を作製した.なお,アスファルトにはストレー トアスファルト 60/80 を用い,粗骨材には砂岩,細 骨材には高炉水砕スラグと海砂,石粉には石灰岩粉 砕を用いた.

供試体の作製に当たっては,現場における転圧を シミュレートするために,ローラコンパクタ(鉄 輪)によって 8.83kN(900kgf)で締固度が 100%に なるように締固めた後¹⁵⁾,タイヤローラのゴム質 と同じ材質のゴム(耐膨潤性改良ゴム,ゴム硬度 Hs68)を取り付たローラコンパクタを用いて鉄輪

写真-1 ゴム輪による転圧

による一次転圧と同じ荷重で二次転圧をおこなった. ゴム輪による二次転圧の状況を写真-1に示す.

CTM 測定は,鉄輪転圧直後およびゴム輪転圧の 回数が5,10,15,20,25,30回のときに実施した.

(2) 二次転圧がマクロテクスチャに及ぼす影響

CTM によって測定されたプロファイルから MPD, RMS,および MPD/RMS を算出した.全てのアス ファルト混合物において,ゴム輪による二次転圧回 数を増加させたときの MPD と MPD/RMS の変動 を図-6 に示す.

図-6 ゴム輪転圧回数と MPD, MPD/RMSの関係

3 種類の粒度を設定した開粒,粗粒,SMA,密粒 ギャップでは,下限粒度の MPD が最も大きく,次 いで中央粒度,上限粒度の順となった.また, MPD の大きさは開粒,粗粒,密粒ギャップ,SMA の順であったが,これらのアスファルト混合物では ゴム輪転圧回数を増加させても MPD に大きな変化 は見られなかった.密粒ギャップ(F),密粒,密 粒(F)では,MPD がほぼ同じレベルを示し,ゴム 輪転圧回数を増加させても MPD は大きな変化を示 さなかった.細粒キャップ,細粒,細粒(F)の MPD は最も小さいレベルとなり,他のアスファル ト混合物と同様,ゴム輪による二次転圧の影響はほ とんど見られなかった.

開粒および粗粒の MPD/RMS はほぼ同じ範囲に 分布しており,ゴム輪の転圧回数の増加にともない MPD / RMS に若干の増加傾向が見られた. SMA で は,ゴム輪転圧回数が10回までの間にMPD/RMS が大きく増加し,その後一定値を維持する傾向が見 られた.ゴム輪転圧 10 回後の MPD/RMS は,鉄 輪転圧後(ゴム輪転圧回数 0)の MPD / RMS の約 2倍に達したことから, SMA ではゴム輪による二次 転圧の初期段階においてマクロテクスチャの形状が 凸型に大きく変化したと考えられる.密粒ギャップ の場合,下限・中央粒度よりも上限粒度において MPD / RMS の増加が大きく, SMA と同様の傾向を 示した.密粒ギャップ(F),密粒,密粒(F), 細粒キャップ,細粒,細粒(F)でもゴム輪転圧回 数とともに MPD / RMS が増加する傾向が見られた. しかしながら、ゴム輪転圧の初期段階で MPD / RMS が大きく増加した SMA とは異なり,ゴム輪転 圧回数の増加とともに MPD/RMS が緩やかに増加 する傾向を示したことから,これらのアスファルト 混合物では,ゴム輪による二次転圧によってマクロ テクスチャが徐々に凸型に変化したと考えられる.

(3) アスファルト混合物の粒度と

マクロテクスチャの関係

表 -2 に示した 4.75, 2.36, 0.6, 0.3, 0.15, 0.075mm の通過重量百分率およびアスファルト量と MPD の間には明確な関係が見られなかった.そこで,4.75mm 残留量を 0.6, 0.3, 0.15, 0.075mm 通過量で除した値と MPD の関係について求めた.これらの中で最も密接な関係が見られた(4.75mm 残留量/0.15mm 通過量)と MPD の関係を図-7 に示す.また,この図に示した鉄輪転圧後およびゴム輪転圧20 回後における(4.75mm 残留量/0.15mm 通過量)と MPD の回帰式を以下に示す.

図-7 粒度と MPD の関係

鉄輪転圧後

$$y = 0.119 \cdot e^{0.211x}, \quad R^2 = 0.89$$
 (1)

ゴム輪転圧 20 回後

$$y = 0.138 \cdot e^{0.196x}, \quad R^2 = 0.94$$
 (2)

ここで,

y : MPD (mm)

x: 4.75mm 残留量 / 0.15mm 通過量

ゴム輪転圧回数が 20 回以外(5,10,15,25,30 回)の場合においても同様に回帰式を求めたところ, 得られた回帰式および R²値と式(2)には大きな差 は見られなかった.

鉄輪転圧およびゴム輪転圧のいずれにおいても回 帰式の R²値は非常に高いことから,(4.75mm 残留 量/0.15mm 通過量)が増加するにしたがって MPD が指数関数的に増加することが分かる.また,図-7 から明らかなように鉄輪転圧後とゴム輪転圧 20 回後の回帰曲線には大きな違いが見られないことか ら,ゴム輪による二次転圧をおこなっても MPD は ほとんど変化しないことが分かる.

(4.75mm 残留量 / 0.15mm 通過量)と RMS の関 係を図-8 に,鉄輪転圧後,ゴム輪転圧 5 回後,20 回後における回帰式を式(3)~(5)に示す.

鉄輪転圧後

$$y = 0.092 \cdot e^{0.228x}, \quad R^2 = 0.89$$
 (3)

ゴム輪転圧5回後

 $y = 0.067 \cdot e^{0.234x}, \quad R^2 = 0.94$ (4)

ゴム輪転圧 20 回後

$$y = 0.060 \cdot e^{0.241x}, \quad R^2 = 0.94$$
 (5)

ここで,

y : RMS (mm)

x: 4.75mm 残留量 / 0.15mm 通過量

MPD の場合と同じように回帰式の R²値が非常に 高いことから,(4.75mm 残留量/0.15mm 通過量) が増加すると RMS も指数関数的に増加すると言え る.しかしながら,図-7 とは異なり,鉄輪転圧後 とゴム輪転圧後の回帰式には差が見られることから, ゴム輪の二次転圧によって RMS が減少したことが 分かる.また,鉄輪転圧後とゴム輪転圧 5 回後の RMS の差は,ゴム輪転圧 5 回後とゴム輪転圧 20 回 の差よりも大きいことから,RMS はゴム輪による 二次転圧の初期段階で減少し,その後転圧回数が増 加しても RMS はほとんど減少しないことが分かる.

鉄輪転圧後,ゴム輪転圧5回後,ゴム輪転圧20 回後における(4.75mm残留量/0.15mm通過量)と MPD/RMSの関係を図-9に,回帰式を式(6)~ (8)に示す.

鉄輪転圧後

ゴム輪転圧5回後

 $y = -0.055 \cdot x + 1.893, \quad R^2 = 0.49$ (7)

ゴム輪転圧20回後

 $y = -0.073 \cdot x + 2.250, \quad R^2 = 0.64$ (8)

ここで,

v: MPD / RMS

x: 4.75mm 残留量 / 0.15mm 通過量

鉄輪転圧後では,(4.75mm 残留量/0.15mm 通過 量)と MPD/RMS の間には相関が見られなかった. ゴム輪転圧5回後では,データのバラツキが大きい ものの,全てのアスファルト混合物の MPD/RMS が鉄輪転圧後よりも増加したことから,ゴム輪転圧 によってマクロテクスチャが凸型に変化したことが 分かる.

ゴム輪転圧20回後は,ゴム輪転圧5回後と比べ

図-8 粒度とRMSの関係

データのバラツキが少なく,回帰式の R²値が増加 した.ゴム輪転圧 20 回後の MPD/RMS は,ゴム 輪転圧 5 回後の MPD/RMS よりも大きいことから, 転圧回数の増加によってマクロテクスチャの形状が さらに凸型に変化したと言える.また,ゴム輪転圧 20 回後の MPD/RMS と鉄輪転圧後の MPD/RMS の差は,(4.75mm 残留量/0.15mm 通過量)が小さ くなるほど拡大する傾向を示した.したがって,細 粒分の多いアスファルト混合物では,ゴム輪による 二次転圧によってマクロテクスチャの形状が凸型に 変化する傾向が強いと考えられる.

粒径 (mm) 19.0 13.2 4.75 2.36 0.60 0.30 0.15 0.075 通過重量百分率(%) 100.0 98.0 41.9 32.5 12.9 21.9 16.2 10.7

表-3 試験施工に用いた SMA の粒度

5.現場における二次転圧がアスファルト舗装 のマクロテクスチャに及ぼす影響

舗装施工時に用いるタイヤローラの二次転圧によ ってアスファルト舗装のマクロテクスチャがどのよ うな影響を受けるのかを明らかにするために試験施 工を実施した.試験施工に用いた SMA(アスファ ルト量 6.5%)の粒度を表-3 に示す.施工に当たっ ては,マカダムローラによる一次転圧(転圧回数 4 回で均一)の後,タイヤローラおよび振動タイヤロ ーラ¹⁶⁾によって表-4に示すような8パターンの二 次転圧をおこない,二次転圧終了後におけるアスフ ァルト舗装のマクロテクスチャを CTM によって測 定した.また,試験施工と同じ材料,配合を有する SMA を室内において作製した.なお,供試体の作 製に当たっては、試験施工における転圧をシミュレ ートするために,前項4における供試体の作製方法 と同様,鉄輪による転圧の後,ゴム輪による二次転 圧を実施し,二次転圧回数が4,6,8,12,15,20, 25,30回後におけるマクロテクスチャを CTM によ って測定した.

試験施工において測定された MPD と室内試験の MPD に差が見られたことから,ここでは,各転圧 回数の MPD (MPD_n) を二次転圧 4 回後における MPD (MPD₄) で除すことにより正規化した値を求 め,二次転圧回数の増加にともなう MPD の変化に ついて検討した.二次転圧による MPD の変化を 図-10 に示す.室内試験の結果では, MPD は二次 転圧の初期段階において減少し,その後一定値に収 束する傾向が見られた.試験施工の結果では,振動 タイヤローラの方がタイヤローラよりも MPD の減 少量が小さくなったが,いずれのケースでも室内試 験の結果と同じように二次転圧の初期段階で MPD が減少する傾向を示した.

MPD / RMS についても, MPD と同様, 各転圧回 数の MPD/RMS を二次転圧 4 回後における MPD / RMS で正規化した値を求めた.二次転圧による MPD / RMS の変化を図-11 に示す. 室内試験の結 果では, MPD / RMS は二次転圧の初期段階で増加 し,その後一定値を維持した.試験施工の結果は, MPD の場合と比べ室内試験結果との一致度は低い が,室内試験の結果と同様に二次転圧回数の増加と

表-4 試験施工の条件

TΝ	二次転圧	転圧回数
1	タイヤローラ	4
2	タイヤローラ	6
3	タイヤローラ	8
4	タイヤローラ	12
5	振動タイヤローラ	4
6	振動タイヤローラ	6
7	振動タイヤローラ	8
8	振動タイヤローラ	12

図-10 二次転圧による MPD の変化

図-11 二次転圧による MPD / RMS の変化

ともに MPD/RMS が増加する傾向が見られた.したがって,現場施工においてもタイヤローラや振動 タイヤローラによる二次転圧によってマクロテクス チャの形状が凸型に変化したと言える.

6. 結論

本研究では、アスファルト混合物のマクロテクス チャを CTM によって測定し、測定されたプロファ イルから算出される MPD, RMS および MPD/ RMS について解析した.また、現場施工をシミュ レートした転圧方法によって室内供試体を作製し、 アスファルト混合物の粒度とマクロテクスチャの関 係およびゴム輪による二次転圧がマクロテクスチャ に及ぼす影響について検討した.さらに、現場にお いて二次転圧の条件を変えた下で試験施工をおこな い、得られた結果と室内試験の結果を比較した.

本研究によって得られた結果を以下に示す.

- グルービング,ショットブラストなどの表面処理 を施したアスファルト混合物,ニート工法,ホッ トロールドなどを含む 24 種類のアスファルト混 合物のマクロテクスチャをサンドパッチ法と CTM によって測定した.その結果,サンドパッ チ法から得られる MTD と CTM 測定から得られ る MPD には非常に強い相関があることが分かっ た.また,CTM 測定から得られる MPD / RMS はマクロテクスチャの形状を表し,MPD / RMS が大きいほどマクロテクスチャが凸型であること を示した.
- 室内において 18 配合のアスファルト混合物を作 製し,CTM 測定を実施した.なお,供試体の作 製に当たっては鉄輪による一次転圧の後,ゴム輪 による二次転圧をおこない,現場施工における転 圧をシミュレートした.MPD は二次転圧の回数 が増加しても大きな変化を示さなかったが, MPD / RMS は二次転圧によって増加する傾向が 見られた.したがって,ゴム輪による二次転圧に よってマクロテクスチャが凸型に変化することが 分かった.
- 骨材の(4.75mm 残留量 / 0.15mm 通過量)が大きくなるにしたがって MPD, RMS は指数関数的に増加した.また,(4.75mm 残留量 / 0.15mm 通過量)が小さいアスファルト混合物では,ゴム輪の二次転圧によって MPD / RMS が増加する傾向,すなわちマクロテクスチャが凸型に変化する傾向が強いことが分かった.

・一次転圧を同一条件とし、二次転圧を8パターン に変えて SMA の試験施工をおこない、舗装の マクロテクスチャを測定した.また、室内にお いて試験施工をシミュレートした転圧方法で供 試体を作製し、マクロテクスチャを測定した. 試験施工における二次転圧回数と MPD の関係 は、室内試験から得られた両者の関係とほぼ一 致した.また、室内試験から得られた結果と同 じように、現場においても二次転圧回数が多く なるほど MPD/RMS が増加する傾向、すなわ ち舗装のマクロテクスチャが凸型に変化する傾 向が見られた.

参考文献

- 1) PIARC: Technical Committee Report on Surface Characteristics, 1978.
- Lew, M. C. and Henry, J. J. : Prediction of Skid resistance as a Function of Speed from Pavement Texture, *Transportation Research Record*, No.666, TRB, pp. 7-13, 1978.
- ASTM: Standard Practice for Calculating International Friction Index of a Pavement Surface, *Standard No.E1960-98*, ASTM 2002.
- ASTM: Standard Test Method for Measuring Pavement Macrotexture Depth Using a Volumatic Technique, *Standard No.E965-96(2001)*, ASTM 2002.
- 5) 市原薫,小野田光之:路面のすべりとその対策,技術 書院,1997.
- International Standard: Characterization of Pavement Texture Utilizing Surface Profiles, Part 1: Estimation of Mean Profile Depth, *ISO 13473-1*, ISO 1994.
- 7) 井原務,井上武美:路面テクスチャ/路面騒音に関 する検討,舗装工学論文集,Vol.6,pp.225~230, 土木学会,2001.
- 8) 七五三野茂:高速域のすべり摩擦に与えるテクスチャの影響要因分析について,舗装工学論文集, Vol. 3, pp. 1~8, 土木学会, 1998.
- 9) 高野漠:舗装機械の使い方,建設図書,1995
- (10) 安部裕也,亀山修一,玉井昭典,笠原 篤,斎藤和 夫:Circular Texture Meter (CTM)とDFテスタによ る国際摩擦指標(IFI)の算出,舗装工学論文集, Vol. 4, pp. 15~22,土木学会,1999.
- ASTM: Standard Test Method for Measuring Pavement Macrotexture Properties Using the Circular Track Meter, *Standard No.E2157-01*, ASTM 2002

- 12) ASTM: Standard Practice for Calculating Pavement Macrotexture Mean Profile Depth, *Standard No.E1845-*01,ASTM 2002
- Abe, H., Tamai, A., Henry, J. J. and Wambold, J. : Measurement of Pavement Macrotexture with Circular Texture Meter, *Transportation Research Record*, No.1764, TRB, pp. 201-209, 2001.
- 14) Wennick, M. and Gerritsen, W. : Detection of Changes of Pavement Texture Material Recognition, *Proceedings of SURF 2000*, pp. 153-172, PIARC, 2000.
- 15) 舗装試験法便覧:ホイールトラッキング試験方法, 日本道路協会, pp.539-555, 1992.
- 16) 三井晃,飯田 一郎:振動タイヤローラの開発,
 第22回日本道路会議一般論文集(B), pp. 274-275,
 1999.

EFFECTS OF GRADATION OF HOT-MIXED ASPHALT CONCRETE AND SECOND ROLLING ON PAVEMENT MACROTEXTURE

Akinori TAMAI, Shuichi KAMEYAMA, Atsushi KASAHARA Anderson D. A. and Kazuo SAITO

The profile of twenty four types of asphalt concrete pavement was measured by Circular Track Meter. It was shown that the ratio of Mean Profile Depth and Root Mean Square of the profile indicated the type of macrotexture, that is, positive or negative texture. Eighteen types of hot-mix asphalt concrete with various gradations were compacted in the laboratory using a newly developed compaction method that simulates the rolling that occurs in the field during construction. It was found that the ratio of the weight of aggregate retained 4.75mm sieve and passing 0.15mm sieve (R4.75/P0.15) has a large effect on the macrotexture. Secondary rolling with a rubber-tired roller tends to change the texture to a positive value when R4.75/P0.15 is small.