非破壊試験によるコンクリートの圧縮強度評価式の作成

4および強度推定に関する検討

徳島大学 賛助会員○藤本就真 徳島大学大学院 正会員 渡辺健 徳島大学大学院 学生会員 鈴木彩莉 徳島大学大学院 フェロー会員 橋本親典

1. はじめに

コンクリート構造物の圧縮強度を把握するための手法として,圧縮強度評価式による強度推定手法がある。 これは、非破壊検査の一つである衝撃弾性波法により弾性波速度を測定し、弾性波速度と圧縮強度の関係か ら圧縮強度評価式を作成し強度を推定する手法であり、NDIS2426-2 衝撃弾性波法の附属所 D(参考)¹⁾で提 案されている。また、近年は天然骨材採取量の減少に伴い、産業副産物を起源とする骨材である銅スラグ、 高炉スラグ、再生骨材等の有効利用が望まれており、様々な研究がおこなわれている。本研究では、使用材 料、配合を変化させ、圧縮強度評価式の作成を行い、それらの精度と適用性について検討した。

2. 実験概要

2.1 使用材料・配合条件

使用材料を表-1, コンクリート配合を表-2 に示す。セメ ントには普通ポルトランドセメント (OPC) を使用した。 高炉スラグ細骨材 (BFS) は BFS5 を使用し, 細骨材に 30% 置換した。再生粗骨材 (RG) は杭基礎を破砕・分級した低 度処理のものである。

W/C はそれぞれの配合シリーズで 45%, 55%の 2 パター ンとした。また,骨材量が弾性波速度に与える影響を除去 するため,骨材量は全配合で一定とした。供試体は円柱供 試体(φ100×200mm)を使用し,3日,7日,28日,56日, 91日間水中養生を行った後,各試験を行った。

2.2 弾性波法による圧縮強度評価

衝撃弾性波法のうち多重反射(図-1(a))を用いて基本周 波数 f_0 を測定し,式(1)より弾性波速度を算出した。サンプ リング時間の違いによる圧縮強度評価式への影響を確認 するため、サンプリング時間は 10 μ s で計測した。超音波 法(図-1(b))では、150mm 間を伝搬する時間 t を測定し、式(2)より 弾性波速度を算出した。また、弾性波速度 V_p と圧縮強度 f_c の関係は 式(3)で表すことができる。この式(3)を圧縮強度評価式という。 α 、 βは実験によって求まる定数である。本研究では、最小二乗法から α 、 β の算出を行い、圧縮強度を推定し、推定圧縮強度と実測圧縮強 度との誤差率が±15%の範囲内に収まるかを評価した。また、N 配 合での圧縮強度評価式を他の材料を使用したコンクリートにも適 用できるのかを確認するため、N 配合以外の配合に対して N 配合 の α 、 β を用いて圧縮強度評価式を作成し、同様に評価した。

$$V_p = 2 \cdot f_0 \cdot L$$
$$V_p = 150/t$$
$$f_c = \beta \times V_p^{\alpha}$$

表-1 使用材料

使用材料	記号	物性等			
普通ポルトランドセメント	OPC	表乾密度:3.16g/cm ³			
普通砕砂	S	表乾密度:2.57g/cm³,吸水率:2.43%, F.M.2.85,実積率:64.1%			
福山産高炉スラグ細骨材	BFS	表乾密度:2.73g/cm³,吸水率:0.89%, F.M2.9,実積率:54.8%			
普通砕石	G	表乾密度:2.57g/cm³,吸水率:1.62%, F.M.6.66,実積率:55.9%			
再生粗骨材	RG	表乾密度:2.52g/cm³,吸水率:3.75%, F.M.6.59,実積率:57.6%			
高性能AE減水剤	SP	ポリカルボン酸エーテル系			
AE剤	AEA	高アルキルカルボン酸系			

表-2 コンクリート配合

配合 シリーズ	W/C (%)	単位量(kg/m³)							
		w	С	S		G		SL (cm)	Air (%)
				S	BFS	G	RG	(em)	(/0)
N	45	157	349	789	-	964	-	8	4.3
	55	170	3	789	-	964	-	9.5	5.5
BFS	45	157	349	587	251	964	-	11	5.5
	55	170	3	587	251	964	-	10.5	3.8
RG	45	157	349	789	-	-	946	11	6
	55	170	309	789	-	-	946	11	55

(1) (2)

(3)

2.3 ハンマ打撃法

測定は一軸圧縮強度試験機を用 いて荷重 20kN を載荷した状態で行 った。試験は機械インピーダンス 法,反発度法を適用し,それぞれ機 械インピーダンス,反発度を算出し た。

3. 実験結果

衝撃弾性波法と超音波法から測 定した弾性波速度と圧縮強度の関 係から圧縮強度評価式を作成し、圧 縮強度を推定した。そのうち、衝撃 弾性波法と超音波法それぞれの W/C45%を抜粋し,図-2(a),図-2(b), 図-3に示す。その結果,一部は目標 誤差率の±15%には収まらなかった が,平均誤差率は14.1%となった。 このことから,BFS,RGを使用した コンクリートに対して,使用材料毎 に圧縮強度評価式を作成した場合

は, 圧縮強度評価式を用いて圧縮強度推定をすることが可能である ことが示された。

また、衝撃弾性波法から算出した N(普通コンクリート)の圧縮強 度評価式を用いて, BFS, RGの圧縮強度を推定した結果を図-4 に示 す。結果、平均誤差率は18.5 となり, Nの圧縮強度評価式は BFS, RG に適用可能であることが確認できた。

次に、ハンマ打撃法から得られた機械インピーダンス,反発度と, 圧縮強度及び静弾性係数とのそれぞれの相関性を評価した。そのう ち静弾性係数との関係を図-2(c),図-2(d)に示す。結果,どちらの場 合も高い相関を示し,機械インピーダンス,反発度と圧縮強度に相関 があることが確認された。

4. まとめ

BFS, RG を使用したコンクリートは,機械インピーダンス、反発度 と静弾性係数が相関関係にあることが確認された。また BFS, RG を 使用したコンクリートに対して、誤差率±15%程度であれば,圧縮強度 評価式による圧縮強度評価が可能であることが示された。さらに, BFS, RG を使用したコンクリートに対して,N 配合の圧縮強度評価 式を用いて強度推定することが可能であることが示された。

参考文献

NDIS 2426-2 付属書 D:新設コンクリート構造物におけるコンク リート圧縮強度評価方法, pp20, 2014

図-4 N 配合の圧縮強度評価式を BFS,RG 配合に適用した場合の 推定精度