マトリクスアレイ探触子を用いた3次元超音波イメージングの装置実装

愛媛大学 学生員 ○牧田陽行,小澤耀生,大野笙人 正会員 中畑和之

1. はじめに

アレイ探触子を用いた映像化手法が超音波探傷に導 入されつつある. これは素子を励振する時間を制御す ることで,任意の方向に超音波を送信したり集束した りできる.近年では、3次元的に欠陥を映像化するた め,素子を平面に配置したマトリクスアレイ探触子の 導入も検討されている. アレイ探触子を用いた欠陥の 映像化手法として, (FSAP: Full-waveforms sampling and processing) 方式¹⁾ が提案されている. FSAP 方 式は、アレイ探触子の各素子で個別に送受信を行うこ とで得られた波形を PC メモリに記憶し、これらの波 形に遅延(ディレイ)を設定して集束ビームを合成す る手法である.映像化領域の各ボクセルに集束ビーム を送信するため,高い分解能で欠陥像を取得できるほ か,ポスト処理でビームを合成するのでオフサイトで 欠陥の映像化を行うことができる.しかし,送信素子 を切り替えながら全ての送受パターンの波形を取得す る必要があることや,3次元空間を映像化対象とする ためにボクセル毎のビーム計算に時間を要することが 問題である.検査現場で本手法を用いるためには、こ れらの処理時間の短縮が必要である.

本研究では、マトリクスアレイ探触子に対応した FSAP方式を計測装置に実装することとその性能検証 を行うことを目的とする.ここでは、超音波の送受信 を高速に切り替える電子スキャナを企業と共同で開発 した.さらに、波形合成のポスト処理に GPU 計算を 導入して高速化を図った.この FSAP 方式を電子ス キャン装置に実装したプロトタイプを作製した.この プロトタイプによって人工欠陥の3次元映像化の性能 検証を行った結果を示す.

2. FSAP 方式の3次元映像化原理

FSAP 方式による欠陥の映像化の詳細は論文¹⁾に 示されているので,ここでは概要を述べる.マトリク スアレイ探触子のうち,1つの振動素子で超音波を送 信し,散乱波を各々の振動素子で受信する.送信素子 を変えながら超音波を送受信することで,全ての送受 パターンの散乱波が波形記憶マトリクスに埋まること になる.振動素子が N 個ある場合,送受パターンの 組み合わせは N² 通りである.

次に,映像化領域をボクセルに分割し,x, y, z方向 のボクセル数をそれぞれK, L, Mとする.図-1に示 すように,ボクセル番号[k]のボクセル (x^k, y^k, z^k) に 集束ビームを送信する場合を考える.アレイ素子の中 心座標 (x^0, y^0, z^0) から対象ボクセルまでの往復伝搬 時間を T_0^k (基本伝搬時間)とする.また,送信素子 *i* から発振された超音波が対象画素に到達し,そこから 受信素子 *j* まで戻る時間を T_{ij}^k と表す.基本伝搬時間 とこの時間との差 (ディレイ)を $\Delta T_{ij}^k = T_0^k - T_{ij}^k$ と する.このディレイを考慮して,全ての送受信パター ンの波形を合成する.その波形を F^k (t)と表すことに すれば,次のように表される.

$$F^{k}(t) = \sum_{i=1}^{N} \sum_{j=1}^{N} M_{ij}(t - \Delta T_{ij}^{k})$$
(1)

この波形から,基本伝搬時間に相当する振幅値を抽出 し,その値を対象画素にプロットする.ボクセルは全 部で $K \times L \times M$ 個あるので,映像化には簡単に見積 もって $N^2 \times K \times L \times M$ 回の数値演算が必要となる.

図-1 マトリクスアレイ探触子と映像化対象ボクセル

3. FSAP 方式の装置実装と高速処理

本研究では,超音波の送受信の切り替えを高速に行 う電子スキャン装置 (JAS21)を開発した.この電子ス キャン装置は,各チャンネルで独立した増幅回路を持っ ており,64 素子の同時受信が可能である.12 ビットの 高サンプルデジタイザを装備しており,受信した波形 は USB3.0 によって PC に転送される.また,FSAP 方式における集束ビームの計算過程に GPU 計算を導 入した.ここでは1 ボクセルあたりのビーム計算に GPU 計算の1 スレッドを割り当て,多くのボクセル の計算を並列に行うことで高速化を実現した.FSAP 方式を実装したプロトタイプの概要図を図-2 に示す. GPU ボードとして NVIDIA 社の GeForce GTX980M を用いた.

図-2 FSAP 方式の電子スキャン装置への実装

4. 3次元映像化精度と高速化の検証

図-3 ポリスチレン被検体と空洞欠陥の寸法

本研究では,模擬欠陥としてポリスチレン被検体 (音速は2.27km/s)に平底穴を作製した.ポリスチレ ン被検体とその欠陥を図-3に示す.実験では,ジャパ ンプローブ社製の8×8素子のマトリクスアレイプ ローブを用いた.素子ピッチは2mmで,公称中心周 波数は5MHzである.可撓性を有しているため,曲率 を持つ材料に接着することができる.欠陥の設けられ ている側の反対面にアレイ探触子を設置し,映像化を 行った.映像化対象となる総ボクセル数は2.6×10⁵ で,1波形あたりのサンプル数は4096である.映像 化結果を図-4に示す.図-4では,各画素の振幅をそ の領域の最大値で正規化した結果を示しており,0.4 から1.0の値を閾値として等値面表示した.6つの平 底穴の天頂部を再現できていることが分かる.

次に,映像化に要する時間を調べた.図-5に示す ように,駆動する素子数が増えるほど波形取得時間

図-4 ポリスチレン被検体の平底穴の3次元映像化

図-5 (a) 励起する素子数を変更させた場合の波形取得時間とFSAP 実行時間,(b) 映像化対象の画素数を変更させた場合のFSAP 実行時間

と FSAP の実行 (集束ビームの合成) 時間が増加した. 素子数 N の時の送受の組み合わせ数は N² であるか ら,波形取得時間と FSAP の実行時間は 2 次関数的 に増えることがわかった.また,領域のボクセル数を 増やした場合も映像化時間が増加していく.しかし, GPU ボードのビデオメモリが有限であるので1つの ボードでは多くのボクセルを扱うことができない.今 後は,GPU ボードの複数使用による大規模映像化を 検討していきたい.

参考文献

 中畑和之,平田正憲,廣瀬壮一,全波形サンプリング処 理方式を利用した散乱振幅からの欠陥再構成,非破壊検 査, Vol.59, No.6, pp.277-283, 2010.