レーザー超音波法を用いた異方性構造材料の弾性定数の推定

愛媛大学 学生員 〇天野裕維, 溝上尚弥, 愛媛大学大学院 正員 中畑和之

1. はじめに

構造部材や工業製品には特定の方向が強化されてい る材料があり、その場合に材料異方性を発現すること がある.また、多層盛溶接などは冷却時に金属粒が特 定の方向を向くことから、局所的に異方性が現れる. 本研究で対象とするインコネルはニッケル基合金の商 標であり、耐熱性、耐酸化性、耐クリープ性などに優 れているため、発電プラントの配管の異材溶接等に使 用されている.異方性材料の力学特性は弾性スティフ ネスで記述される.ただし、異方性材料の場合は弾性 スティフネスの独立な定数が増えるため、現状では複 数の位置で切り出した試験片に対して、圧縮・引張・ ねじり試験等によってこれを求めている.

本研究では、レーザー超音波法を用いて供試体表 面を伝搬する超音波の可視化を行い、この可視化結果 を基に弾性スティフネスを求めることを試みる.レー ザー超音波法では、材料表面上の多数の計測点で時刻 歴波形が得られる.これを時空間フーリエ変換するこ とでスローネス分布 (位相速度の逆数分布)を計算す る.スローネス分布と弾性スティフネスを関連づける 逆問題¹⁾を設定し、これを解くことでインコネル供 試体の弾性スティフネスの推定を行った.

2. レーザー超音波法による波動場の可視化

図-1 に示すように,結晶が X₃ 軸方向に成長した インコネルの供試体を対象として,その表面の波動伝 搬を可視化する.供試体の密度は 8311kg/m³ であり, X₁, X₂, X₃ 方向の長さは,それぞれ 160,20,30mm である.レーザー超音波法は超音波探触子を供試体 の側面に固定し,波動を可視化したい表面にレーザー を一定間隔で走査しながら照射する.短パルスのレー ザー光は,熱膨張効果によって照射点において超音波 領域の弾性波を発生させる.ガルバノミラーによって

図-1 X₃軸方向に結晶が成長したインコネル供試体

レーザー照射点を高速にスイッチでき,各点で発生した超音波が探触子で受信される.ここで,弾性波動の 相反性を利用すると,あたかも探触子から超音波が 送信されたように可視化される.本研究ではつくば テクノロジー (株) 製の LUVI を用いて超音波の可視 化を行った.中心周波数 2.25 MHz,直径が 5mm の探 触子を供試体に設置し,ビーム径が 0.5mm, 波長が 1064nm のレーザー光を照射した.サンプリング周波 数は 25 MHz である.

図–1 に示す計測面 A と B の波動伝搬を,それぞれ 図–2 と 3 に示す.表面速度の変動がカラーで表示され ている.図–2 の計測面 A では,縦波 (P 波) は真円状 に伝搬しているが,図–3 の計測面 B では,P 波の波 面は円形ではなく X_1 方向に拡がっている.また,P 波の到達した後は横波 (S 波) が到達するが,S 波は粒 界による散乱が顕著である.特に図–3 の計測面 B で

図-3 インコネル供試体の計測面 B の可視化結果

は、S波は線が交差したような波面を形成している. 計測面 A では超音波は円状に拡がっていることから, 等方的な音響特性を有すると判断する.従って,イン コネル供試体はマクロ的にみて横等方性を有する材料 として弾性スティフネスを推定する.

3. 弾性スティフネスの推定

レーザーの走査面を $X_1 - X_3$ 面とすると,各点で時間tの面外振動成分 u_2 が得られる.以下のように時・空間にそれぞれフーリエ変換を施すことで, $X_1 - X_3$ 面内の各方向の位相速度を抽出する.

$$U_{2}(k_{1}, k_{3}, \omega) = \iiint u_{2}(X_{1}, X_{3}, t)$$

$$\times \exp\{-i(k_{1}X_{1} + k_{3}X_{3} - \omega t)\}dX_{1}dX_{3}dt \quad (1)$$

ここで、角振動数 ω は周波数 f と、 $\omega = 2\pi f$ の線形 の関係がある.得られた波数-周波数領域のデータか ら、逆速度 (スローネス)を求める.異方性材料の場 合、伝搬面内の方向によって逆速度が異なるので、逆 速度は $s = (s_1, s_3)$ とベクトル表示される.波数と位 相速度の関係から

$$\boldsymbol{s} = \frac{1}{2\pi f} \boldsymbol{k} \tag{2}$$

が成立する.以上より,ある周波数 f における波数空 間 $\mathbf{k} = (k_1, k_3)$ の値 $U_2(\mathbf{k}, f)$ を式 (1)で計算した後, 式 (2)を用いて座標変換すると $U_2(\mathbf{s}, f)$ が得られる. 計測面 A と B の可視化結果から得られたスローネス 分布を図-4に示す.ここで,赤い部分はその位相速度 で伝搬する成分が多いことを表す.図-4をみると,2 つの円状の分布が現れている.内側の分布は P 波,外 側の分布は S 波を表している.計測面 A は P 波の音 速分布は円状であり方向依存性はないが,計測面 B で は P 波がひし形に近い音速分布となっている.また, 異方性材料の場合,2種類の速度の異なる S 波 (S1 波 と S2 波と表す)が現れるが,この結果からは1種類 しか確認できない.ここでは,面外成分である S2 波 が卓越して伝搬するとして弾性スティフネスの推定を 行う.

スローネス分布と弾性スティフネスを関連づける逆 問題¹⁾を設定し、これを解くことでインコネル供試 体の弾性スティフネスの推定を行う.ここでは、イン コネルをマクロ的にみて横等方性を呈する均質な材料 としてモデル化する.図-4に示す6点の逆速度*SA*~ *SF*を選定して5つの弾性スティフネスの初期値を設 定し、複数の方向のP波音速とS2音速の値を用いて、 弾性スティフネスを推定する.横等方性とした場合、 5つの独立なパラメータを同定することになるが、こ れよりも多い方向でP波とS2波の位相速度を用いる ため、ここでは最小二乗法によって最適解を求めた. 本逆解析によって求めた弾性スティフネスを図-5(a) に示す.また,この弾性スティフネスから算出したス ローネス曲面と群速度曲面を同図 (b) と (c) に示す. 図-5(b) を見ると,P 波はひし形に近い音速分布が現 れており,実験から得られた逆速度の分布を良好に再 現できている.

ここで,群速度を超音波送受信装置を用いて計測した P 波速度と本結果を比較する.探触子面に直交する軸に対して,0,15,30,45 度方向の音速は,それぞれ,5407,5770,6005,6075m/s であった.図-5(c)から得られた音速は,5404,5489,5723,5866m/s であるから,概ね一致している.また,群速度曲面(図-5(c))を見ると,P 波は円状ではなく X_1 方向に拡がった波面を持つことがわかる.今後は,本推定法で得られた弾性スティフネスの妥当性の検証を行いたい.

図-5 (a) 推定した弾性定数と,それに基づいて計算した (b) 位相速度曲面と (c) 群速度曲面

参考文献

1) 溝上尚弥,中畑和之,黄木景二,堤三佳,森亜也華,斎 藤隆泰:レーザースキャンによる音響異方性を有する CFRP 中の超音波の可視化と弾性スティフネスの推定, 土木学会論文集 A2, Vol.73, No.2, pp.I115-I124, 2017.