風洞装置を用いた飛砂粒子の運動解析

香川大学工学部 学生会員 ○中原優祐 香川大学工学部 正会員 石塚正秀 鳥取大学乾燥地研究センター 非会員 黒崎泰典 鳥取大学工学部 正会員 中村公一 モンゴル水文気象環境情報研究所 非会員 Gantsetseg Batdelger 森林総合研究所 非会員 萩野裕章 森林総合研究所 非会員 南光一樹 森林総合研究所 非会員 鈴木覚

1.はじめに

世界では乾燥化が進行しており、地球規模での環境 変化が生じている。乾燥地域の特異な現象の一つとし て、黄砂がある。黄砂は、表土に含まれる窒素・リンの 損失にともなう農業生産力の低下や PM2.5 といった大 気汚染物質による健康被害だけでなく、黄砂粒子を核 とした雲の発生・降水過程を通して地球全体の気候に 影響を及ぼしている。そのため、黄砂を発生させる飛砂 粒子の運動特性を詳細に明らかにすることが重要であ る。これまでに、海岸の砂に対して飛砂粒子の挙動を測 定した事例¹⁾はあるが、本研究では、土壌クラスト形成 下における飛砂によるクラスト崩壊過程を明らかにす るための予備的実験を行った。飛砂風洞装置を用いて、 風により移動する砂粒子の挙動を高速度カメラで撮影 し、飛砂粒子の運動特性を明らかにすることを目的と する。

2. 実験方法

飛砂実験に用いた風洞は、幅0.6m、高さ1mの長方 形断面で、長さは4.0mのエッフェル型吸出式である (図1)。風上から砂(豊浦標準砂)を連続的にパイプ を通して底面近くに供給した。ファンの回転速度は600 rpm、800 rpmの場合、それぞれ約4ms⁻¹、約5ms⁻¹で ある。図中の soil と書かれた場所に、土壌バットを配 置し、土壌侵食量を計測した。同時に、高速度カメラ (KATO KOKEN CO,LTD 製、K5)を用いて飛砂の挙動 を撮影し、PTV (Particle Tracking Velocimetry)法を用い て、飛砂粒子の運動特性を調べた。

3. 実験条件

(1) 土壤条件

本実験でクラスト作成に使用した土壌は、モンゴル 土壌(ゴビ砂漠北部)(Loam)、笠岡粘土(Silty clay loam) の二種類である。粒径加積曲線を、豊浦標準砂(Sand) と合わせて図2に示す。

図2 実験で使用した土の粒径加積曲線

(2) 降雨・乾燥実験(クラスト形成実験)

降雨実験では、人工降雨装置(Nanko et al., 2004)を 用いた。モンゴル土壌と笠岡粘土について、それぞれ3 つの土壌バットを用意して、それぞれ2種類の土壌ク ラストを作成した(表1)。降雨強度は、36~47 mm h⁻¹ であり、降雨時間は20~60秒に変化させた。水分供給 された土壌バットは、恒温乾燥機を用いて 50℃で約8 時間乾燥させた。表1において、降雨時間が長いケー スを strong crust とした。

表1 風洞実験条件

Case	Soil for dust	Crust	Wind speed(rpm)			
1	Kasaoka Clay	no				800
4	Mongol soil	no	500	600	700	800
5	Mongol soil	weak crust				800
6	Mongol soil	strong crust				800

(3) 風洞実験

風洞実験の条件を表1に示す。Case1、5、6では風 速を800 rpmに一定として、Case4では、500~800 rpmに段階的に変化させた。

4. 実験結果

(1)土壤侵食量

風洞実験後の土壌バットの質量変化量(実験前-実験 後)を図3に示す。笠岡粘土とモンゴル土壌を比較す ると、笠岡粘土(Silty clay loam)よりもモンゴル土壌 (Loam)の方がより多く削られる結果が得られた。ま た、モンゴル土壌について比較すると、供給水分量が多 いほど削られにくい結果が得られた。なお、水分供給し た笠岡粘土は乾燥後にクラストが大きくめくれ上がり、 風洞実験に使用できなかった。

(2) 飛砂粒子の運動特性

図4は飛砂粒子の運動と入射角・反射角の定義を示 す。クラストが無い(水分供給が無い)モンゴル土壌に 対して、風速を800rpmで実験した結果を以下に示す。 高速度カメラは8000fpsで撮影し、そのうち100フレ ームを解析対象とした。高度別の入射角(底面に向かっ て下降する粒子)と反射角(底面に対して上向きの粒 子)の分布を図5に示す。入射角度は0~10度付近が 最も多く、10度を超える飛砂粒子はなかった。一方、 反射角度は20~40度の粒子が多く、また、入射角度よ りも反射角度の方がばらつきが大きい結果が得られた。

図 5 粒子高度別の入射角・反射角の分布(風速 800 rpm)

高度別の速度粒子の分布を図 6 示す。入射する粒子 も反射する粒子も底面に近いほど、粒子速度が遅くな る結果が得られた。また、飛び出し速度は衝突速度より も速度が遅くなっており、地面への衝突により運動エ ネルギーが損失していることがわかる。

6. まとめ

風洞実験により、笠岡粘土よりもモンゴル土壌の方 が削られやすく、また、供給水分量が多いほど土壌ク ラストが削られにくい結果が得られた。飛砂粒子の運 動特性については、飛砂粒子の底面への入射角度(底 面に向かって下降する)はすべて 0~10 度であった が、反射角度は 20~40 度にもみられた。今後は、解 析数を増やして、結果の代表性を検討する予定であ る。

謝辞:本研究は、JSPS 科研費基盤研究 B(課題番号: 15H05115)、鳥取大学特別経費事業黄砂プロジェクト の補助を受けて実施した。また、本研究は森林総合研 究所と香川大学との共同研究の成果である。

参考文献

1) 藤澤ら:土木学会論文集 B2(海洋工学), Vol.B2-65, No.1, 2009. 2) Nanko, et al., Journal of Forest Research, 9, 157-164, 2004.