#### 1. <u>研究背景と目的</u>

近年,全国各地で台風などによる集中豪雨が発生し,河川の 氾濫による大規模な水害が多発すると共に堤防の決壊事例も見 られるようになっている.堤防破壊による被害は甚大なもので あり,その8割以上が越水に起因するものであると言われてい る<sup>1)</sup>.しかし堤防の越水破壊メカニズムはよく分かっておらず, 今後懸念される水害被害を軽減するためにもそのメカニズムを 解明することは重要な課題である.そこで本研究は小規模模型 を用いた堤防の破壊実験,その中でも切欠の長さを変え横越水 による越水範囲が異なる場合における堤防破壊実験を行い堤防 破壊の初期段階における越流水が堤防破壊に及ぼす影響につい ての考察,越水開始から堤防崩壊までの崩壊過程や特徴を時系 列で把握し考察することと,堤内地と堤体の基礎地盤が固定床 (板),移動床(土)の場合での堤防の崩壊形状,崩壊過程を把 握し考察することを目的とする.

### 2. 実験設備及び方法

実験水路は水路長 4m, 水路幅 80cm の長方形断面の直線水路 である(図-1参照). 堤体は,高さ 10cm,天端幅 10cm,法勾配 1:2のものを,堤外地(通水路)幅 10cm,堤内地(氾濫域)幅 20cm となるように設置した. 破堤部の堤体材質は真砂土と DL クレ ー(非塑性シルト)を 7:3 の割合で混合したものを使用し, 含水値の調整を行い,堤体を締固め作成した.なお,破堤箇所 をある程度固定化するために破堤部の天端に切欠を設けた.ま た,破堤部および堤内地側に固定床(板),移動床(土)による 基礎地盤を設けた.堤体越水時の流況と堤体の崩壊状況の把握 するために模型直上と模型真横(堤内地側)に設置した 2 台の ビデオカメラで撮影した.図・2 に使用した材料の締固め曲線を 示す.表 - 1 に本研究で行う実験条件を示す.

## 3. 堤内地盤の違いによる影響

図・3 に越水開始から裏法部崩壊開始時間および越水開始か ら堤体崩壊までの時間を示す.表・1 で示したように切欠長さ 15 cmを Case1,切欠長さ 75 cmを Case2 とする.堤内地盤が固定 床と移動床の場合に裏法尻崩壊開始時間に大きな差はなかった. しかし堤体崩壊までの時間は堤内地盤が移動床の場合固定床の 場合の約3倍以上も長い結果となった.また,固定床の場合崩 壊は裏法尻,裏法面から始まるが,裏法尻の崩壊が裏法面より も先行し,裏法尻部分から天端方向に徐々に崩壊が進んだ.一 方移動床の場合には裏法尻,裏法面の崩壊がほぼ同時に開始し, その後裏法尻付近では越流水により基礎地盤の鉛直下向きへの

| 徳島大学 | 学生会員 | ○青山大輝 |
|------|------|-------|
| 徳島大学 | 正会員  | 武藤裕則  |
| 徳島大学 | 正会員  | 田村隆雄  |



図-1 実験水路概要

表-1 実験条件

| 流量(l/s)  | 2.34   |
|----------|--------|
| 河床勾配     | 1/1000 |
| 越流水深(cm) | 1      |

|       | 切欠の長さ(cm) |
|-------|-----------|
| Case1 | 15        |
| Case2 | 75        |



図-2 堤体材料の締固め曲線



破壊が起きた.

# <u>4. PIV 解析による堤体表面の流速</u> <u>測定結果</u>

PIV 解析は越水開始から堤体崩壊 過程でも初期段階である裏法部が斜 面に沿って面的に破壊されるまでを 対象とした. 切欠長さ 15 cmの Case1 (図-4,図-5,図-6)からわかるよ うに越流水が河道に対して直角方向 に越水している. 越水開始から裏法 部崩壊までの流況このような流れで あった. これは切欠長さが短いこと により越流水の流れを制限したこと によりこのような越水になったと考 えられる. 切欠長さ 75 cmの Case2 (図-7,図-8,図-9)においては河 道の上流側から下流側方向に見ると 河道を流れる水が堤体に向かって斜 めに越流している. 天端付近を斜め に越水し, そのまま裏法部に侵入す ると越流水の流水方向は斜面を下る につれ河道に対して直角方向へ近づ いて行った.越水範囲が異なれば越 水時の流況が異なることが分かった.

## 5. 堤体の崩壊過程と崩壊形状

図-10はCase1の崩壊の様子である. 裏法尻から破壊が先行し裏法部を斜 面にそって,面上に破壊され,鉛直 下向きへの破壊になる.その際,裏 法尻付近が洗掘され落掘りの形成が 開始した.鉛直下向きの破壊はその まま裏法面,裏法肩,天端へ進み堤 体が崩壊した.その際,崩壊形状は 河道に対してほぼ直角で左右対称で ある.図-11はCase2の崩壊の様子 である.裏法面中央付近から斜面に 沿って面上に破壊が開始され,鉛直 下向きの破壊へ移る.裏法尻付近の 破壊はCase1に比べ進行が遅い.そ



の後崩壊箇所が1箇所に集中し,裏法尻部の破壊が進行,鉛直下向きの破壊が進み裏法面,裏法肩,天端の順に破壊され崩壊に至った.崩壊形状は左右非対称である. Case1, Case2 の裏法尻部の破壊過程の差は越流水が破壊箇所に集中する時間の差があることが関わっていると考えられる. また4で述べたように流況が異なることで崩壊状況の違いが生じたと考えられる.

1) 吉川勝秀:河川堤防学,技法堂出版, p88, 2008.