1. はじめに

Nicolas ら⁽¹⁾は複数のリンクから構成されるネット ワーク内の密度と交通流率の関係, MFD (Macroscopic Fundamental Diagram)の存在を示した.

米澤ら⁽²⁾は, MFD の関係を利用し, ネットワーク 内の車両台数の管理のみで実施可能な「集計 QK 制 御」を提案した. 同制御の有効性はシミュレーション 解析により示されている. しかし, 集計 QK 制御の制 御効果はネットワーク内の密度の偏りが生じている 場合, 自由流の交通まで制御してしまうため, 必ずし も有効に機能するとは限らない.

そこで、本稿では、集計 QK 制御の制御効果発現の 要件構築を目的とし、制御効果発現の分析を行った.

2. 集計 QK 制御

集計 QK 制御は, 複数のリンクから構成される道路 ネットワークエリア内に存在する車両台数を事前に 設定した台数に維持することを目標としてエリアへ の流入交通量を調節する制御である. 詳しくは先行研 究を参照されたい.

3. 時間距離図を用いた分析

1) 初期設定

OD 交通量に関しては、ボトルネックより発生した 渋滞が延伸し、最終的にグリッドロック現象が発生す るように設定した.

本分析は,仮想ネットワーク上(図1)で行った. また,各リンクの qk 関係は,図2のように設定した. 交通容量を唯一のパラメータとし,自由流側は原点を 始点とする傾き v_f(km/h)の線分,渋滞流側は傾き v_c(km/h)の線分として設定した.合流比に関しては, 全8リンクの車線数が等しいため,1:1とした.

制御開始については,検証ケース毎に制御開始する 交通状態を設定し,全てのオンランプを制御するもの とする.その後,オンランプを開放しないものとする. 制御流入交通量は一律0,すなわち本分析では流率管 理は実施せず,ランプ閉鎖または開放のいずれかを選 択する制御を想定する.

対象ネットワーク

v_c[km/h]/

交通密度

図 1

q(台/h) 自由流 渋滞流

km/h1

交通流率

リンク容量

2)分析手法

本分析では、時間距離図を用いて、ネットワーク内 の交通流を記述し、衝撃波理論を用いて、交通流の変 化による衝撃波速度を式(3.1)より算出した.そして、 各交通流の変化における集計交通流率の変化量を式 (3.2)より算出した.ここで、ネットワーク全体の集計 交通流率の変化量の合計が正であれば、制御効果が発 現とする.

$$\omega_{xy} = \left(q_x - q_y\right) / \left(k_x - k_y\right) \tag{3.1}$$

$$dQ_{xy}/dt = \omega_{xy}(q_x - q_y)$$
(3.2)

ただし,

ω_{xy}:交通状態 x と y 間の衝撃波速度(km/h)
q_n:交通状態 n の交通流率(vehs/h)
k_n:交通状態 n の交通密度(vehs/km)
dQ_{xy}/dt:交通状態 x と y 間の集計交通流率の変化量

$(vehs \cdot km/h^2)$

3)検証ケース

本分析は3ケースで行い,その結果を検証する. [ケース1]渋滞が合流点Aに到達する前に制御開始 [ケース2]渋滞が分流点Bに到達する前に制御開始 [ケース3]渋滞が合流点Cに到達する前に制御開始

3. 分析結果

1) ケース 1

時間距離図は図3に示される. 図中の実線は衝撃波 の伝搬の時間推移を表している. なお, q_i, k_i (*i=a,b,c,d,e*)は自由流を示し, q_j, k_j (*j*=1,2)は渋滞流を 示している. 図3より,ケース1における制御実施時 の集計交通流率の変化量は式(4.1),(4.2)となり,制御 実施前後では,ネットワーク状態は図4となった.オ ンランプからの流入がゼロとなるため,集計交通流率 の変化量が共に負となる.以上より,制御開始直後に 制御効果は発現しないとの結果が得られた.

 $dQ_{1b}/dt = \omega_{1b}(q_b - q_1) < 0 \tag{4.1}$

34 ケース1における制御実施前・後の ネットワーク状態

2) ケース 2

図5より,ケース2における制御実施時の集計交通 流率の変化量は式(4.3),(4.4)となり,制御実施前後で は、ネットワーク状態は図6となった.(4.3)と(4.4) を比較すると設定した qk 関係より $v_f > \omega_{2e}$ である.ま た、合流点Aの合流比1:1より、 $(q_e-q_2)=q_e/2$ であり、 渋滞延伸の条件より、 $q_b > q_e/2$ である.そして、制御 実施により、 $q_b=0$ のため、 $(q_e-q_2) < (q_d-q_e)$ である.し たがって、集計交通流率の変化量の合計は負となる. 以上より、制御開始直後は制御効果が発現しないとの 結果が得られた.

$$dQ_{2e}/dt = \omega_{2e}(q_e - q_2) > 0$$
 (4.3)

$$dQ_{cd}/dt = v_f (q_d - q_c) < 0$$
 (4.4)

ネットワーク状態

3) ケース 3

ケース3はケース2と同様の結果となった.本稿では、紙面の関係上、ケース3の詳細は省略する.

4. まとめ

本稿では,時間距離図及び衝撃波理論を用いて集計 QK 制御の制御効果の分析を行った.

分析の結果,同制御の制御効果は,いずれのケース においても制御開始直後には制御効果が発現しない との結果が得られた.本稿で得られた結果は集計QK 制御の制御開始直後のみの制御効果であることから, 集計QK 制御の制御効果発現の要件の構築には不十 分である.

そこで,制御開始直後だけでなく,ある程度時間が 経過した段階における集計 QK 制御の制御効果の分 析を今後の課題としたい.

【参考文献】

(1)Nicolas Geroliminis, Carlos F Daganzo: Macroscopic modeling of traffic in cities, TRB0413, 2007

(2)Toshio Yoshii, Yuji Yonezawa, Ryuichi Kitamura: Evaluation of an area metering control method using the macroscopic fundamental diagram, 12th WCTR

(3)松本洋輔・吉井稔雄・高山雄貴:ネットワーク特性を考慮したランプ流入制 御手法,愛媛大学工学部学位論文,2011