フライアッシュⅡ種を細骨材の一部に置換したコンクリートの性状

高知工業高等専門学校専攻科 学生員 〇甲把浩基 高知工業高等専門学校 正会員 横井克則 大和生コンクリート工業 正会員 原田隆敏 高知工業高等専門学校専攻科 学生員 三浦健太 大和生コンクリート工業 曽我部敏郎,田中光浩

1. はじめに

大震災後の大津波による事故の影響もあり、原発のかわりとして化石燃料による火力発電の運転がフル稼働している。これに伴い、石炭火力発電所から発生する石炭灰は 2011 年度で約 1000 万 t 発生すると推定 ¹⁾ されているが、今後さらに増加することが予測され石炭灰の有効利用が急務となっている。有効利用の状況として、コンクリート用混和材に代表されるフライアッシュ(以下、FA と記す)がある。 FA の主成分である SIO₂とセメント及び水が反応することでポゾラン反応が起こり、コンクリートの長期強度の増進や乾燥収縮の低減といった長所を有する。一方で、全国的に海砂を代表とした天然骨材の採取規制が厳密化され、特にコンクリート用細骨材の安定確保が急務となっている。本研究は、FAII種を細骨材の一部代替材として、置換率 0%、10%及び 20%と変化させたときのコンクリートの強度特性及び耐久性の検討を行った。さらに、粗骨材が石灰石砕石と砂岩砕石で異なるときの比較検討も実施した。

2. 実験方法

2.1 使用材料と配合

セメントは、高炉セメント(密度 $3.02g/cm^3$ 、比表面積 $3800cm^2/g$)を使用した。細骨材は、高知県内の石灰石砕砂(密度 $2.66g/cm^3$)及び海砂(密度 $2.61g/cm^3$)の 2 種類使用した。粗骨材は、高知県内の硬質石灰石砕石 1505 及び 2015 (密度 $2.69g/cm^3$) と硬質砂岩砕石 1505 (密度 $2.60g/cm^3$) 及び 2015 (密度 $2.61g/cm^3$) を使用した。細骨材の置換材として FAII 種(密度 $2.29g/cm^3$)を用いた。混和剤は、ポリカルボン酸系 AE 減水剤及びレジン系 AE 調整剤を用いた。目標スランプは $8\pm 2.5cm$ 、目標空気量を $4.5\pm 1.5\%$ と設定した。FA の細骨材置換率を 0.10、20%と変化させ計 6 配合とした。ここで、石灰石粗骨材を用いた配合名を I とし、砂岩砕石を用いた配合名を I とする。コンクリートの配合表を表I1 に示す。

A TO A POPULATION OF A POPULAT													
シリーズ	水セメント比 W/C(%)	細骨材率 s/a(%)	単位量 (kg/m³)									フレッシュ性状	
			水	セメント	フライアッ	S1	S2	G1	G2	AE減水	AE調整	スランプ	空気量
					シュ	砕砂	海砂	1505	2015	剤	剤	(cm)	(%)
I -0	60	48.4	145	242	1	655	281	456	558	2.42	0.5A	7.5	4
I -10		45.8			81	846	-			1.94	3.5A	10	3.1
I -20		42.8			164	750	_			2.90	25.0A	8.5	3.2
II -0	60	47.4	145	242	1	642	275	451	551	1.94	1.0A	8	3.9
I I −10		44.7			81	827	ı			1.45	4.5A	10	3.5
II -20		41.9			159	737	-			2.42	26.0A	10	3.6

表-1 コンクリートの配合及びフレッシュ性状

2.2 実験方法

本研究では骨材、セメント、細骨材及び FA をドライミキシングした後、水と混和剤を投入し、2 分間練混ぜを行った。養生は、 $20\pm 2^{\circ}$ Cの水槽中で所定材齢まで行った。練混ぜ後の各実験は 2010 年度コンクリート標準示方書 (規準編) に記載されている内容に従って実施した。フレッシュコンクリートの性質としては、JIS A 1101 に従ってスランプ試験と JIS A 1128 に従って空気量試験を行った。硬化コンクリートの性質としては、JIS A 1108 に従って圧縮強度を測定した。凍結融解試験は JIS A 1148 (A法) に従い、実験条件として水中凍結温度は $-18\pm 2^{\circ}$ C、水中融解温度は $5\pm 2^{\circ}$ Cとし、試験サイクルを 300 回で終了になるように設定し、30 回毎に動弾性係数を測定した。促進中性化試験は JIS A 1153 に従い、条件として温度 $20\pm 2^{\circ}$ C、湿度 $60\pm 5\%$ 、二酸化炭素濃度 5 ± 0 . 2%の試験槽内にて、1、4、8、13、26 週の中性化深さを測定した。長さ変化試験は JIS A 1129-2 に従い、条件として温度 $20\pm 2^{\circ}$ C、湿度 $60\pm 10\%$ の恒温室に設置し、所定日数に応じてコンタクト型ミクロンストレインゲージで長さ変化を測定した。

3. 実験結果

3.1 フレッシュコンクリートの性状

表-1 にスランプ試験及び空気量試験の結果を示す。全ての配合で目標範 囲内となっているが、空気量に関しては同表で示すように、多量の AE 調 整剤を使用して目標値を確保した。

3.2 圧縮強度

図-1 に圧縮強度を示す。I 及びⅡともに FA の置換率が大きいほど強度 は大きくなった。FA を混入することで無混入の配合と比較して 28 日から 91日の長期強度の伸びが大きくなった。これは、ポゾラン反応によりコン クリート内部の組織が緻密になったと考えられる。材齢7日の短期強度に おいては、FA を細骨材置換することで、 FA 混入の有無に関わらず同程度 の強度が確保されている。これにより、FA をセメント置換したときに見ら れる短期強度の低下が改善される。また、I及びⅡ配合ともに、圧縮強度 が同程度であるため、粗骨材の違いによる影響は小さいと考えられる。

3.3 中性化深さ

図-2 に中性化深さを示す。FA を混入することで若干ではあるが、中性 化が増大している。これは、 FA を混入することでコンクリート内部が緻 密になるが、コンクリート中の水和反応により生成される水酸化カルシウ ムがポゾラン反応によって消費され、アルカリ成分が減少したためと考え られる。また、I及びⅡ配合で比較すると中性化深さの差がほとんどない ため、粗骨材の違いによる影響は小さいと考えられる。

3.4 凍結融解試験

図-3 に相対動弾性係数を示す。 I 及びⅡ配合ともに FA の置換率が大き くなると耐凍害性も向上する傾向にある。また、粗骨材の種類の違いによ る影響に関しては、砂岩砕石の方の耐凍害性が優れている。

3.5 長さ変化率

図-4に長さ変化率を示す。Ⅰ配合が、Ⅱ配合と比較して、長さ変化率 を 40~45%程度低減できた。建築学会が定める長さ変化率の上限値は 800×10⁻⁶が条件であり、両配合ともこの値より非常に小さく、条件を満 足している。さらに、FAを混入することで無混入の場合と比べて変化率 が若干ではあるが、小さくなる傾向にある。これは、圧縮強度の改善及 び中性化を抑制した理由と同様に FA によって、コンクリート内部が緻密 になったことで空隙は小さくなり、収縮を抑制できた 2)と考えられる。

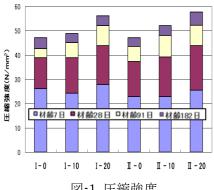


図-1 圧縮強度

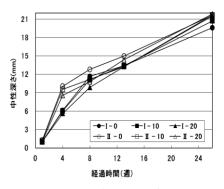


図-2 中性化深さ

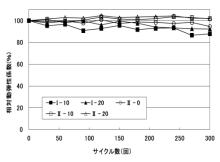


図-3 相対動弾性係数

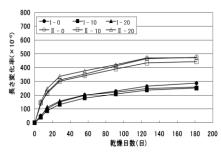


図-4 長さ変化率

4. 結論

- (1)FA を細骨材として混入することで、初期強度の低下が改善された。また、FA 混入によるポゾラン反応に よる長期強度の増進も確認できた。
- (2) 中性化は FA 混入と無混入の配合を比較するとほぼ同等の値となり、FA の置換率による中性化の変化は確 認できなかった。
- (3)圧縮強度及び中性化については、粗骨材の種類の違いによる影響は見られなかったが、長さ変化率では石 灰石砕石の方が40~45%程度小さくなった。
- 参考文献 1)日本フライアッシュ協会,石炭灰発生量の見通し,http://www. japan-flyash. com/pdf/process01. pdf 2) 加地貴:フライアッシュを細骨材の一部に置換使用したコンクリートの実用化に関する研究,徳島大学学位論文,2007