超音波法を用いた PC グラウト充てん度評価に関する検討

徳島大学大学院 学生会員 〇藤原 悠貴 徳島大学大学院 正会員 渡辺 健 徳島大学大学院 正会員 橋本 親典 徳島大学大学院 正会員 石丸 啓輔

1. はじめに

近年, PC 構造物でとりわけ問題となるのが, PC 鋼材の腐食であり, その主要因が PC グラウト不良や塩害で ある。初期の PC グラウト材料と施工品質による PC グラウトの充てん不良により, PC 鋼材の腐食や破断が発 生する。また,その腐食や破断は表面に変状として表われにくく,目視検査では検出することができない。PC グラウト充てん度評価は弾性波法の一つであるインパクトエコー法の有効性が示されている。

本研究では、弾性波法である超音波法に着目した。超音波法による欠陥の検出対象としては、一般にひび割 れや剥離、また打ち継ぎ部の評価などに適用されているが、PC グラウトの充てん度評価における適応に関する 検討は十分とはいえない。そこで、本研究ではシース管を埋設したコンクリート供試体を作製し、シース管の 内部にグラウトが充てんされたときの計測結果から、超音波法のグラウト充てん度評価と適応性を検討した。

2. 実験概要

2.1 供試体

本実験において作製した供試体の寸法は,縦100mm×横100mm×高さ400mmの供試体と,縦200mm×横200 ×高さ200mmの供試体を作製し,それぞれの供試体の中にスチールまたはプラスチックのシース管を埋設させた。供試体端部の入力箇所からシース管までの距離は200mm,100mm,60mmとしている。またスチールのシース管の外径は41mm,内径は35mmとなっている。

2.2 測定方法

超音波法は,探触子の使用数,設置方法によって計測方法を分類できる¹⁾。本研究では表面から内部の空隙 を検出することを想定し,二探触子触子一面法での計測を実施した。

測定は,発信子により供試体内部へ超音波を伝播させ, シース管内のグラウトによって反射した超音波を受信 子で受信することで波形を得た。得られた波形の変化か ら硬化時間におけるグラウトの充てん度を評価した。

グラウトや供試体のコンクリートの超音波伝搬速度 より,各深さに埋設したシース管から反射が生じる場合 の反射位置の理論値を表-1に示す。

表-1 超音波の反射位置

		かぶり	かぶり	かぶり
		200mm	100mm	60mm
超音波の 反射位置 (µ sec)	シース管	100.0	50.0	30.0
	端部	200.0	100.0	100.0

3. 実験結果

3.1 グラウトの凝結硬化過程

予備実験としてグラウトの凝結硬化を,超音波法により評価した結果を,図-1に示す。一般的にはセメントやグラウトが硬化している場合は,超音波伝播速度は遅く,硬化に伴い速度が速くなることが知られている。このことより,練り混ぜ後2日ほどで凝結を完了することがいえる。充てん直後から18時間後までは弾性波伝播速度が3600 m/sほどに増加し, 2日後までにほぼなだらかな曲線となり,3800m/s程度で収束することが確認できた。

3.1 シース管かぶり 200mm での実験結果

計測条件として、センサをスチールシース管に埋設した供 試体に設置し、周波数を100kHz、電圧を300V、サンプリン グ周波数を20MHz で記録した受信波形を図-2 に示す。未 充てんの段階から、シース管による反射も端部における反射 も確認することができなかった。プラスチックシース管の結 果においても同様であった。これはシース管までの距離が 200mm と距離が長かったため、超音波が減衰してしまった ためだと考えた。

3.2 シース管かぶり 100mm での実験結果

図−3 にスチールシース管を埋設した供試体での結果,図
−4 にプラスチックシース管を埋設した供試体での結果を示す。

図-3における 55µsec 付近での結果を見てみると, 波形の 大きな変化がみられ, 時間が経過するにつれて振幅が減少し ていることがわかる。これは, 表-1 よりシース管からの反 射である。この結果よりグラウトの充てん度を波形の変化よ り判別が可能である。

同様に図-4 における 55µsec 付近での結果を見てみると, 波形の大きな変化を確認することができる。これは, 表-1 よりシース管からの反射である。しかし, グラウトの硬化が 進んでも波形の変化をみることはできなかった。これは, プ ラスチックシース管はスチールシース管に比べて, シース管 の密度が小さいことによりグラウトが硬化してもシース管 自体で弾性波が反射してしまうためだと考えた。よってプラ スチックのシース管ではグラウトの充てん度を評価するこ とは困難である。

図-2 スチールシース管かぶり200mmの結果

図-3 スチールシース管かぶり 100mm の結果

4. まとめ

超音波法を用いてグラウトの充てん度評価を検討した結果,スチールシース管において,グラウトの凝結硬 化が進むにつれて,空隙時に見られた波形の振幅が減少することから,充てんの評価が可能であることが明ら かになった。しかし,プラスチックシース管においては,プラスチックの密度が小さいことから,シース管で 弾性波が反射してしまうため充てん度の評価は困難であった。超音波法は弾性波が減衰するため,どの程度の 深さまで充てん度を評価できるかが今後の課題である。

参考文献

 1) 土木学会:弾性波法によるコンクリートの非破壊検査に関する委員会報告およびシンポジウム論文集, pp.132-139, 2004