II-=15

AN XML-BASED GENETIC ALGORITHM FOR NONLINEAR OPTIMIZATION
PROBLEMS

Dep. of Civil and Env. Eng., Ehime University
Dep. of Civil and Env. Eng., Ehime University
Dep. of Civil and Env. Eng., Federal University of Paraiba
Dep. of Civil and Env. Eng., Ehime University

1. INTRODUCTION

Optimization is a common problem in many fields of
science. The optimization of a mathematic function
corresponds to the search of its maximum or minimum
value. Many techniques have been proposed in order to
find these values. However, most of these traditional
techniques are not very efficient for solving nonlinear
functions. Evolutionary Algorithms (EAs), which are
defined as a set of probabilistic optimization methods
based on the theory of evolution of Charles Darwin'),
appears to handle arbitrary types of problem objectives and
constraints. The species behavior observed by Darwin is
simulated computationally in order to obtain optimized
values for the parameters. One of the implementations of
EAs, called Genetic Algorithms (GAs), was developed by
John Holland? in the end of the 1960s. Since this first work,
many GA implementations have been developed but most
of them were built to a specific purpose.

This work aims at presenting the development of a GA
tool that can be used for solving any type of optimization
problem. A portable, configurable and general purpose GA
software was constructed utilizing the Java (Sun
Microsystems) programming language and the eXtended
Markup Language (XML).

2. THE GENETIC ALGORITHM

As mentioned above, the GAs are inspired in the natural
evolution process. It means that as better as an individual
fits in the environment, greater is the possibility of it
survives and generates offsprings. A set of solutions are
called population. Individuals called chromosomes
compose a population. Each chromosome represents a
possible solution to the problem. Each solution is evaluated
and generates a fitness.

As can be seen in Figure 1, a GA must initially generate a
population of individuals. The first population of
individuals is then analyzed. The fitness for each individual
is determined, i.e., how much the proposed solution is
relatively better compared to the other individuals. Like the
theory of Darwin, the strongest individuals are more likely
to be selected and less inclined to be discarded. While the
stopping criterion is not reached, the algorithm creates new
populations of individuals. Through the alter population
operation, techniques such as crossover and mutation are
applied in the selected individuals of the population. These
techniques alter the values of the parameters and are the
key concepts that make the GAs a powerful optimization
technique. In the crossover operation, as in the nature, parts
of the number (generally bits) are exchanged between two
individuals generating an offspring different from the
originals. In the mutation operation each bit of the

O Amilcar Soares Janior (Research Student)
Camilo Allyson Simdes de Farias (Dr. of Eng., Student)
Celso Augusto G. Santos (Dr. of Eng., Assoc. Professor)
Koichi Suzuki (Dr. of Eng., Professor)

offspring has a small probability to be flipped. It means
that if the mutation occurs in one bit, a 0 becomes a 1 and
vice versa.

INITIALIZE POPULATION

A
EVALUATE POPULATION

STOPPING
CRITERIA
SATISFIED?

YES
A 4

FINISH ALGORITHM

SELECT INDIVIDUALS

y
ALTER POPULATION

Figure 1 The GA general description.

3. HOW THE SYSTEM WORKS

Nowadays, the use of GAs as a method for optimizing
functions is very common in engineering”. However, most
of the GAs implementations are applied to specific cases.
This proposal suggests that the application’s source code
might be not changed, so there is only one configuration
file to be previously filled by the user.

Figure 2 shows how the system works. The user selects
the desired options in order to perform the optimization
(parameters, objective function, restrictions, crossover rate,
etc.). The system loads the information from the file
created by the user, runs the optimization and creates a file
with the output values.

Execution
Configuration Configurable Results File
File toad and Portable | generate (XML)
{XML) Genetic »
Algorithm
(JAVA)
I 4

Figure 2 How the system works

4. UTILIZED TOOLS

In order to build a portable GA, it was necessary the
adoption of a programming language that allows a

—117—

multiplatform execution. The Java programming language
was used because it is an object-oriented language different
from the conventional ones. This language uses the
bytecodes (intermediary language) approach. This
approach allows the portability of any application platform
developed in such language, which is independent of the
Operational System that is being used. As a consequence,
the developed tool can run in different Operational Systems
such as Windows, Linux, etc.

The eXtensible Markup Language (XML) was utilized so
as to describe the GA simulation (input and output files)
and to represent a flexible and extensible data”. The
elements and attributes described in this language provide
information about the data. XML formatted data can be
manipulated by different applications and modified in
accordance with the needs that are emerging. The main
goal of using it to describe the GA simulation is that the
output data can be used by other software with the purpose
of building more complex tools.

5. RESULTS

The GA implementation was applied so as to find the
minimum value of the Goldstein-price function. This
nonlinear function is described by Equation (1) and shown
in Figure 3.

Equation (1):
fx,y) = (1 +(x+y+1)?(19-14x+3x* - 14y + 6xy +3y?)).

(30+(2x-3y)*(18-32x+12x* +48y-36xy +27y%))
subject to

Figure 3 Goldstein-price function

As can be seen in Figure 3, the minimization of this
function is not an easy task. The optimal minimum value,
which is equal to 3.0, is located at position (x.,y) = (0,-1.0).

In the present simulation each generation was composed
of 60 individuals. At the beginning a grid was set and the
individuals were equally distributed along the limits for x
and y. The evolution of the algorithm from the initial
population until the 60" generation is illustrated in Figures
4 and 5. Examination of the results shows that most of the

solutions converged to the optimal value by the 60"
generation. The stopping criterion was reached at the 179"
generation and the exact optimum was found.

th

Figure 5 Population at the 60" generation

6. CONCLUSIONS

Many GAs have been developed with the intention of
solving specific problems. The main goal of the developed
tool, which is implemented using Java and XML, was to
allow the user to solve any type of optimization problem.
Once properly configured, the tool can optimize
mathematical functions or more complex applications. As a
result, this GA implementation may be very useful as a
support for various fields of science.

REFERENCES

1) Beyer, H.G., (2001). “The Theory of Evolution Strategies”.
Springer, Inc., 380 p.

2) Holland, J. H., (1975). “Adaptation in Natural and
Artificial Systems”, MIT Press.

3) Santos, C.A.G., Srinivasan, V.S., Suzuki, K. & Watanabe,
M. (2003) “Application of an optimization technique to a
physically based erosion model”. Hydrol. Processes 17, 989
1003, doi: 10.1002/hyp.1176.

4) Graves, M. (2003) “Projeto de Banco de Dados com XML",
Makron Books, Inc, 518pp.

— 118 —

