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1. INTRODUCTION

Simulation and optimization models are commonly used
in order to provide a sustainable management of the water
resources'” ”. However, the implementation of such
models usually requires predictions of input variables such
as groundwater levels and reservoir inflows. This work
investigates the application of a feedforward artificial
neural network (ANN) for multivariate prediction of daily
reservoir inflows and groundwater levels in the water
resources system of Matsuyama City, Japan.

ANNs process information analogously to the biological
nervous system and are capable of extracting and dctecting
the mosl complex nonlinear trends among the variables in
study ¥

2.STUDY SYSTEM

Matsuyama city water system is composed of a
multipurpose reservoir and a set of 26 unconfined wells
located around Shigenobu River, which is the main river of
its hydrographic basin. The groundwater of Shigenobu
River together with Ishitegawa Dam reservoir is used for
supplying all the water needs of the city. Ishitegawa Dam
is also used for irrigation and flood control in the region.
Figure 1 shows the layout of the system.

3. FEEDFORWARD NEURAL NETWORK MODEL

(1) Architecture

The architecture of the network is formed by the input
layer, one hidden layer and the output layer. The input
layer is composed of three neurons, which are the previous
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Figure 1 Study system.
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reservoir inflow /(#-1), previous groundwater level H(#-1),
and current forecasted precipitation P(f). The number of
three neurons in the hidden layer was determined based on
a trial-and-error procedure. The current reservoir inflow
I(f) and groundwater level H(f) are the neurons of the
output layer.

(2) Topology

For neural networks, not only the way neurons are
implemented but also how their interconnections
(topology) are made is important. In this study the network
topology is constrained to be feedforward, ie., the
connections are allowed from the input layer to the hidden
layer and from the hidden layer to the output layer. Figure
2 illustrates the network topology of this study.

(3) Activation functions

Continuous and differential functions are necessary for
relating inputs and outputs of the artificial neural networks.
According to Haykin® the sigmoid function is a good
activation function for each neuron due to its generally
accepted behavior. The tan-sigmoid function is chosen as
the activation function for the hidden neurons. For the
output layer neuron, a linear activation function is used.

(4) Training process

The original data (input and targets) are convcmcntly
scaled before the ANN training™. The training is performed
by a back-propagation algorithm which has been
successfully applied to water resources systems. In this
approach, the Levenberg-Marquardt (LM) method is used
for the back-propagation. A detailed explanation of the LM
method is provided by Hagan & Menhajﬁ). The network
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Figure 2 Topology of the feedforward ANN.
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training is supervised, i.e., the series of weights between
the neurons and the bias are adjusted through the iterations
in order to fit the series of inputs to another series of
known outputs.

The training process stops by means of the Early
Stopping Method. This technique avoids a problem called
overfitting that occurs during the neural network training,
The network seems to be very well trained by showing
very small errors from the training set data, but when new
inputs are used the error is large®.

4. APPLICATION AND RESULTS

An ANN model is employed for predicting daily
reservoir inflows into Ishitegawa Dam and groundwater
levels for one-step-ahead. The groundwater levels are
measured at Minamitakai Observation Well, whose
water table is used as a basis to operate the set of wells
responsible for part of Matsuyama’s water supply.

The observed data set for the ANN calibration and test
was composed of 4,748 days (1991-2003). The model was
calibrated using the first 3,653 days (1991-2000) and tested
over the last 1,095 days (2001-2003). The ANN training
used the Early Stopping Method and, therefore, the
calibration data set was divided into two subsets: the first
used 2,922 days (1991-1998) for the training process and
the second used the other 731 days (1999-2000) for
validation to specify when to stop the network training.

The correlation () and bias (B) statistical indexes were
used as criteria for evaluating the performance of the ANN
model used for generating the hedging rules. The
correlation computes the vanability of a number of
predictions around the true value. Different from
correlation, the bias is a measure of systematic error and
thus calculates the degree to which the prediction is
consistently below or above the actual value. High
correlation alone does not mean high accuracy. For
example, a significant constant bias in the predictions
would provide the highest correlation (» = 1) but poor
accuracy. As a result, the accuracy of predictions is better
analyzed by using both bias and correlation. The perfect fit
between observed and predicted values, which is unlikely
to happen, would have r = 1 and B = 0. Salas” provides the
equations to calculate these indexes.

The results from the prediction test for reservoir inflows
and groundwater levels are presented in Figures 3 and 4,
respectively. The high correlations and low biases observed
in Figures 3 and 4 reveal that the ANN model could
perform accurate predictions of reservoir inflows and
groundwater levels for one-step ahead.

5. CONCLUSIONS

A feedforward artificial neural network model was
implemented for generating one-day-ahead reservoir
inflows and groundwater levels based on their previous
daily values and the precipitation forecast. The prediction
results suggest that this model may produce reliable data to
be used by the optimization models being developed for
the sustainable management of Matsuyama City’s water
resources system.
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Figure 3 Comparison between observed and ANN-
predicted reservoir inflows of the test data set for one day

ahead.
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Figure 4 Comparison between observed and ANN-
predicted groundwater levels of the test data set for one day
ahead.
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