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1. INTRODUCTION

This study investigates the derivation of monthly
reservoir operating policies by Implicit Stochastic
Optimization (ISO) and Artificial Neural Networks
(ANNS).

The ISO technique consists in generating synthetic
inflow scenarios which are used by a deterministic
optimization model to find optimal releases. The set of
optimal releases are related to current reservoir storage and
projected inflow in order to define operating rules. In
contrast to the conventional use of regression analysis to
obtain equations relating optimal releases to the other
variables, this study uses ANNs to calculate the release to
be implemented at each month. ANNs are capable to detect
trends and extract patterns that are too complex to be
noticed by either humans or other computer techniques”.

The procedure is used to find reservoir operating rules of
Ishitegawa Dam, reservoir which supplies the city of
Matsuyama in Japan.

2. DETERMINISTIC OPTIMIZATION MODEL

It is assumed that the main objective of the operation is
to find the allocations of water that best satisfy the
respective demands without compromising the system.
Another aim is to keep the storage high whenever possible,
L.e., every time there exists alternative optimal solutions for
the releases. The objective function of the optimization
problem is thus written as follows:
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where ¢ is the time index; N is the operating horizon; R(f) is
the release during period ¢, D(f) is the demand during
period t; S(¢) is the reservoir storage at the end of time
interval #; and Sp,. is the storage capacity of the reservoir,

Release and storage at each period are related to inflow
and spill through the continuity equation:
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in which S is the initial reservoir storage; 1(¢) is the inflow
during time #;, and Sp(?) is the spill that eventually might
occur during time 7.

The physical limitations of the system define intervals
which release, storage and spill must belong to:
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where Rpa is the maximum possible release; Sged 1S the
dead storage; and Sppna is @ maximum value set to the
volume of spillage.

3. IMPLICIT STOCHASTIC OPTIMIZATION
PROCEDURE

The ISO procedure has the three basic steps described
below: ’

1) Generate M synthetic N-month sequences of inflow;

2) For each inflow realization, find the optimal releases

for all N months by the deterministic optimization
model (1)-(5);

3) Use the ensemble of optimal releases (M x N data) to

develop operating rules for each month of the year.

The releases obtained by the optimization model, R(?),
are related to reservoir storage at the end of the previous
time period, S(¢-1), and inflow during the current time
period, I(f). One relationship (rule) is determined for each
month of the year. Therefore, with information of initial
reservoir storage and forecasted inflow for the current
month, the amount of water that should be released can be
defined by the particular rule.

The relationships are established by ANNs. Thus, the
release for any condition of storage and inflow can be
found by accessing the corresponding ANN.

Like the optimization model (1)-(5) and the ISO
procedure, the ANNs for each month were constructed in
MATLAB.

4. ARTTIFICIAL NEURAL NETWORK MODEL

The model scheme for each month is a multilayer feed-
forward ANN formed by three layers. Figure 1 illustrates
the topology of the ANN model. The number of nodes
(neurons) in the hidden layer is determined applying a trial-
and-error procedure. The best training results were
achieved with 20 nodes.

In this network, each element of the input vector
(forecasted inflow and initial reservoir storage) is
connected to each neuron in the hidden layer. The ith
neuron in the hidden layer has a summation that gathers its
weighted inputs and bias to form its own scalar output or
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Figure 1. Topology of the ANN niodel._ |
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induced local field. Each induced local field is submitted to
an activation function so that they become the inputs-of the
output layer. The unique neuron in the output layer also has
a summation that gathers its weighted inputs (from the
hidden layer) and bias to form its induced local field. This
induced local field is then submitted to the neuron
activation function and becomes the final output or release.
A tan-sigmoid function is chosen as the activation function
of hidden nodes and a linear activation function is used for
the output layer neuron.

The ANN training is performed by the well-known back-
propagation algorithm” which has been successfully
applied to water resources systems. The network training is
supervised, 1.e., the series of weights between the neurons
and the bias are adjusted through the iterations (epochs) in
order to fit the series of inputs to another series of known
outputs. After 1000 epochs the training is terminated.

S. RESULTS AND DISCUSSION

The ISO procedure was applied to the Ishitegawa Dam
reservoir which supplies the city of Matsuyama. The
maximum reserv01r storage (Smax) Was assumed to be only
8,500,000 m different from the actual capacity of
12, 800 000 m’, because it was desired to observe many
shortage situations and then compare how they are handled
by the models.

The ISO process was run under an operating horizon of
288 months (24 years). 100 sequences of synthetic monthly
inflow data were generated by the non—statxonary
autoregressive model of Thomas-Fiering”. The initial
storage was set t0 Syax. The first and last two years of data
were rejected to avoid problems with boundary conditions.
This provided 24,000 optimal monthly releases.

The data of releases, initial storages and inflows for the
months of January through December were grouped and
trained by the ANN model described in Section 4. For each
month, a trained ANN was established and the
corresponding values of releases were obtained by their
use. This process generated 12 ANNs, one for each month.

After the definition of the release rules, they were
applied to a new realization of 10 years of monthly inflows
and compared to the results obtained from the utilization of
the deterministic optimization model assuming the inflows
as perfect forecasts. The operation of the system using the
perfect-forecast situation gives us the “ideal” releases that
should be employed for all 10 years since it has knowledge
of all future inflow values. In addition, simulations based
on the so-called Standard Linear Operating Policy®
SLOP were used for comparison. The SLOP states that
when the available water is equal or less than the demands,
all storage water is released; and when the available water
exceeds the demands, the excess is stored in the reservoir
until its maximum capacity is reached and spillage starts to
occur.

Figure 2 shows the results for the period between the
fourth and eighth years within the 10-year sertes. The
correlation regarding water allocation between the results
obtained by the ISO-ANN-generated rules and
optimization under perfect forecast was 93%. The
correlation ‘of SLOP with optimization was only 71%.
Comparing the results from the optimization under perfect
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Figure 2. Results for the period between the fourth
and eighth years within the 10-year series.

forecast with the ones from the SLOP it can be noticed that
the optimization model tries to mitigate the great
concentrated deficits that happen with the SLOP by
decreasing the releases prior to shortage periods so that the
overall deficit also diminishes.

Examinations of Figure 2 show us that the 51mulat10n
usmg the ISO-ANN-generated rules tries to allocate water
in a way very similar to the optimization under perfect
forecast. This information indicates that the results from
the derived release policies were quite . satisfactory given
the fact they have information only on the previous
reservoir storage and current inflow whereas the
optimization model has knowledge of inflows for the
whole operating horizon and thus better means to define
superior policies.

4. CONCLUSIONS

In this study, monthly operating rules were defined by
Implicit Stochastic Optimization and Artificial Neural
Networks. These rules showed capable to produce policies

r relatively equivalent to the ones found by optimization

under perfect forecast. Thus, such procedure may be useful
in the decision-making process of reservoir operation.
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