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1.0 : Introduction

A reduced stiffness method is presented for the
estimation of lower bounds to the imperfection sensitive
general buckling of axially loaded elastic sandwich
cylindrical shells. Careful analysis of the energy changes
during the buckling process allows definition of a
reduced stiffness theoretical model that provide compact,
explicit, analytical expressions that could be proved
practically suited to design. Isotropic sandwich shells
with core carrying shear stresses only and with equal
faces are considered for the analysis.

2.0 : Classical buckling analysis

A convenient way of examining the various possible
equilibrium paths described by the stationarity of the
total potential energy is to first define the fundamental
path emerging from the unloaded and undeformed state.
For the present problem this is approximated by the
membrane solution
(M7, M7, M)=(0,00)

axisymmetric
(NF,NF,NEy=(=201,,00) and
with corresponding strains (EF, EfEf)=(-0/E,uc/E0)>
where, O - externally applied end stress, E — the
modulus of elasticity and il - the Poison’s ratio.
Depending on the incremental membrane strains that are
linear (¢ ¢, ) and quadratic (¢} ,¢’ ), the total
potential energy of an axially loaded sandwich cylinder
of length L, mean radius a, face thickness hy and core
thickness A, can be broken down into components as
below.

M=11, +0T, +T1, +T1, +...... M
Here, 11,,11,,11, are independent, linear and quadratic
contributions to the total potential energy. Of the present
concern are the quadratic components, [T, of the total
potential energy, for it is that control the stability of the
fundamental path and from which the Eigenvalue
problem yielding the critically stable state is derived.

Assuming that the displacements (%,v,w) in the directions
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of (x,s,£) and rotations (8 _,B,) about the s and x
axes are sufficiently small, the quadratic component IT,
can be expanded into its main energy components as
M,=U, +U, +Us +V @
where, U, =UL +U; +Ug: the axial, circumnferential
and twist strain energy terms, U,=Uj;+U;+UJ :
strain terms and

corresponding bending energy

Uy =U% +us: the shear strain energy terms in the
superscripted planes. The last term V=V~ +V",
depends upon the quadratic membrane displacement
relations and should accordingly be seen as part of the
non-linear membrane strain energy. The classical
buckling strength ¢, is derived from the following
equation.

Uy +Uy +Us +q,(V +V')=0> k=g /2Eh, 3
For a shell with classically simply supported ends,
making use of linear stress and moment strain relations
and quadratic stress strain relations, stationarity of the
total potential energy with respect to kinematically
admissible displacements (4, v,w, B, B,) results in a
linear eigenvalue problem. The classical buckling load,
q. and modes of sandwich cylindrical shell are obtained
as eigenvalues of the Eigen vector. This g, is identical
with the value given by equation (3).
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Fig. 1: Geometry of isotropic
cylindrical sandwich shell



3.0: RS buckling analysis

By identifying the energy components that may be
eroded during buckling, it is possible to define the RS
buckling strength of the sandwich cylinder by
eliminating the appropriate energy components. The
non-linear circumferential membrane energy term, V° is
a consequence of the fundamental state Poisson
expansion and the non-linear membrane stress resultant.
It is this component of non-linear circumferential stress
that, as pointed out by Donnell as early as 1934, will be
eroded in the subsequent interactive post-buckling
behavior. At small deflection, a mode coupling will
result in the loss of the initial stabilization provided by
the non-linear membrane strain energy V° and the linear
axial strain energy U},. This leads to the simple idea
that a lower limit to the sandwich cylindrical shells post
critical loss of stiffness, would be provided by the

reduced total potential energy which then finally leads to

k.=[U;+Uﬁ +U, +U; IF‘H’? Jk “)

U,+Uy+Us e

Where k" is the RS buckling stress. The variation of the £
and & with the length of the cylinder is given in Fig. 2,
wherey (= Et,/4aG,(1-v2)) is the representative parameter
of core material shear strength. As can be seen from this
graph, the RS buckling stress constantly reduces as the

length of the cylinder increases. But, the classical
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Fig. 2: Variation of classical and RS
stress with V and L/a

Sandwich shell with he/he=10, L/a=2

buckling stress is almost constant from L/a=0.3 to 10
and then reduces as the length of the cylinder increases.
4.0: Post buckling analysis

An elastic and geometrically nonlinear analysis method
has been developed to allow investigation of the post
buckling behavior of axially compressed sandwich
cylindrical shells. The FEM program developed for this
purpose uses so called 9-node Isoparametric shell
element with independent rotational and displacement
degrees of freedom, in which the three dimensional
stress and strain conditions are degenerated to shell
behavior. In the post buckling analysis, the mode shape
at the critical buckling load from the RS analysis was
introduced as the in{tial imperfection of the shell. It is
evident from Fig. 2 that for a wide range of V and L/a
ratio the critical classical and RS axial wave number
equals to one. As can be seen in Fig. 3, analysis were
continued with increasing initial displacements. For
small initial displacements, the equilibrium paths show a
peaking followed by a saddle point, which then increase
as the applied load increases. In contrast, the curves E
and F do not show such a trend. In curve D, the peak
point (Point 1) and the saddle point (Point 2) are almost
equal to each other, indicating that the respective stress
at Point 1 is obviously the minimum buckling stress.
As can be seen from Fig. 3, point 1 is much closer to RS
critical buckling stress than the classical stress giving a

lower limit to the imperfect sensitive analysis.
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Fig. 3: Post buckling analysis
Sandwich shell with V=0.01, L/a=2



