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LINTRODUCTION In constituting a dynamic model for aseismic analyses of a soil-structure interaction
system supported on the surface of soil, one important step is determining impedance matrix that represents
the resistance of soil medium to the vibration of the structure. In recent decades, a larger amount of research
work| 1, 2] has been done for this problem. However, all of the methods and the corresponding results are
subject to be verified in the case of a real structure under earthquake as they are based more or less on
differently specified assumptions. Thus, an effective method able to produce impedance matrix from real
recordings of the responses and excitations will undoubtedly be needed. In this paper, an identification
method to produce impedance matrix for a soil-structure interaction system under earthquake is proposed.

2.BASIC EQUATIONS OF MOTION A structure with a rigid foundation supported on the surface of
soil under earthquake is shown in Fig.1. To differentiate between the various nodes subscripts are used: b
for the node of the foundation located on the soil-structure interface, s the remaining nodes of the

superstructure, and f for the ground or free field. The equations of motion in the frequency domain for
steady-state responses are formulated as[2]:

[S:x S:b J{Us } 0 1
S;,_, Su, + I[,;, Ub - IbbUf ( ) sh';cnar:
in which '
S; = ~w’M, +iwC,;+K,; ij=sb )
where U's is the amplitude vector of absolute displacements; Be
M's, Cs and K's are mass, damping and stiffness matrix, L u
respectively, of the superstructure with a fixed base.w is the
circular frequency. I3, is the impedance matrix of soil(Fig.2). [ I
I, = K,,(ka) +ia,c(a,)) (3) %
. av = u)a'lvs- - . (4) /eanhquzke U soil layers
The matrix Kp, contains the static-stiffness coefficients 7 !
bed rock

determined by the shear modulus G, Poisson's ratio of soil v
and half width of the base a. The variable a, represents the
dimensionless frequency, in which v, is the shear-wave
velocity of soil. The Matrix k(a,) and c¢(a,) are the
dimensionless spring and damping coefficients, respectively,
and generally frequency-dependent , i.e. the function of a,.
Eq.(1) and (3) can be expressed in submatrix form as:
Ss:Us w Sstb = 0 (5 )
1,,(U, - Uf) =(8,U, + SbbUb) (6)
From Eq.(5), matrix S;; and S;, can be identified by general
method|3]. Eq.(6) is the input-output equation for soil. Based
on the reciprocal theorem of linear structures, Sp =S, T. On the
other hand, as the base is rigid matrix S;5, only contains the
parameters related with mass and geometric quantities alone. So
attentions are only devoted on the impedance matrix /.
JIDENTIFICATION OF IMPEDANCE MATRIX

Fig.1. A soil-structure interaction system

by
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half-space soil: G, v,V,

Fig. 2. A substructure of the foundation

Since the common characteristics of 1, are that all the elements of matrix k and ¢ in Eq.(3) are single-
valued function of the dimensionless frequency a,, they can thus be approximated with polynomials of the

following forms:

Ny
k; = Z b;'pk (a,);
k=0

Py

G = Z di;pk(ao);
k=0

i, j=x,0x,.y, Oy, z, 0z )

in which px(a,) indicates a polynomial function of degree k, b;# and d;# are the constants of the polynomial
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and N;jand P;; represent the number of degrees of the polynomials. Subscripts i,j=x, 0x, y, Oy, z, 8z denote
the six translational and rotational directions. The criterion for identification of the constants is expressed in
the following expression:

Jb,d)= Y {U,(i0,) ~U,(iw,)}" — min (8-1)
I1=1
b= (binb,lu"'bﬁz,"',b-a bl-"‘b-h-,ily'“ab‘z,zab:z'"bzu); iv.l =X, exa-y’ ey, z, 0z (8'2)

ij? ij ij

d = (dd a0 dl ) d] ey -d )y 1] =%, 05,, Oy,2,02 (8-3)

(1R 0! ij
in which (:Ib is the recorded output and vectors b and d are to be identified.
4. NUMERICAL EXAMPLES FOR A SHEAR-TYPE

Table }. The system paramelers

BUILDING The system parameters are given in table 1. The m = 28300 kg
simplified impedance matrix only containing horizontal and " 1 = 290000 kg-m?
rotational terms given in Ref.[1] is used here to represent the e my, = 18300 kg
impedance of soil. The form of theimpedance matrix is "‘ S :‘h =35§4r?‘ kg-m*
h ' Sck
8Ga k. +iac, ] 0 mo, I a=263m
I 7L;—‘- K = 4.76x 108 KN/m
1= 8Gd’ ) k_r—)]a g: 267(l)0087k:l'/slm
: =6.1x1 N/m?
0 30 - U)[ka’*" *18,Cy0,] soil: G, v, Vs v=1/3
v,= 150 m/s

in which the frequency-dependent dimensionless spring and
damping coefficients are approximated by Lengendre polynomial  T.p1e 2. Residuals of k;y, €11, ka2 and €
within frequency range 0~20 Hz, where Nyy=Ngyxex=7 for Kyy [Tioise |_0% % T 3% | 5%
and Kpxex» Pyy=Pexox=2 for Cyy and Cexpx. By Using the Kyy | 1.82E-4 | 1.42E-1|2.17E-1| 3.50E-1

normalized variable t, Legendre polynomials are defined by: | Kozox 1-535-2 ;E;Ell gi;g: 2;;2:
=l — _ . | L.ISE-3 | 1.55E-1|2.32E-1] 3.86E-
e G ey C;:u. T 6157 | 1.48E-1 | 1.68E-1| 6.18E-1

p,(1)=1 (10-2) [average |5.99E-5 | [42E-1|2.08E-1[4.32E 1
p,) =t (10-3)
(k + Dp,. ()= 2k +Yip () - kp, () (k=1,2,...)  (10-4)
in which wmin and wmax indicate the frequency range of interest.
The measured responses are generated numerically supposing the
system under El Centro earthquake and then Gaussian white noise
with frequency bandwidth 0.1~20 Hz and levels of a certain
percentage of the root-mean-square of the unpolluted responses
are added to the generated responses as well as the free-field
acceleration to simulate noise-polluted records.  For
demonstration, the estimated kyy, Kgxgx, Cyy and Cgxps versus the 0 10 20
assumed true ones and the residuals for noise levels: 0% (noise- frequency(Hz)
free cases), 2%,3% and 5% are shown in Fig.3 and Table 2, 1
respectively. It is evident that for the noise-free case the estimated
kyy. kaxoxs Cyy and cgyax are completely identical to the true ones
and the residuals are relatively small; for the noise-contaminated
cases the errors arise and increase as the noise level increases, but
the estimated coefficients fluctuate about the true ones and the
errors are acceptable for noise levels: 2%~3%.
5.CONCLUDING REMARKS (a)The best functional
representation of soil impedance matrix can be inversely : .
produced with considerable accuracy. (b) Although the accuracy 0 - ' 1'0
is deteriorated by noise contamination, the errors are acceptable

for noise level 2%-3% by this method. Eearessii
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Kgxex, Cyy and Coxex with the true ones

—
[\%]

o
o]

o
S

Values of kyy and kayax

%

— T e s e T

0.5~

b o

Values of cyy and coqex






