皆生海岸を対象とした波浪予測に関する研究

鳥取大学大学院	学生会員	〇村上	晃一・三木	脩平
鳥取大学	正会員	黒岩	正光・梶川	勇樹
中電技術コンサルタント(株)	正会員	橋本	淳	

1. はじめに

鳥取県西部の皆生海岸は弓ヶ浜半島の美保湾に面 する約 16km の海岸である.古くから海岸侵食が問 題となっており、これまで、離岸堤、突堤や人工リー フなどによる侵食対策やサンドリサイクルによるソ フト的な対策が講じられてきた.しかしながら、近 年、爆弾低気圧や台風通過によるうねり性の波によ って、局所的に不可逆な侵食が発生している.今後、 さらに地球温暖化による海面上昇や気候変動に伴う 波浪特性の変化により海岸侵食が進行する恐れもあ ると考えられる.このようなことから将来への適応 として海岸保全対策を随時検討することが必須であ り、より精度良い海浜変形予測モデルも求められる.

皆生海岸は、弓ヶ浜半島により遮蔽されており、回 折波と湾曲した海岸線の影響で波向きと波高分布が 一様ではない.したがって広域における等深線変化 予測では、砕波点の波高や波向き、各工区個々の海岸 施設周辺における3次元海浜変形予測においては、 沖側境界の波浪条件となる波高や波向の的確な設定 が求められる.

本研究では,皆生海岸全体を対象とした広域にお ける波浪予測モデルの適用性と波浪条件設定のため の手法を検討した.

2. 波浪予測手法の概要

皆生海岸全体の概要を図1に示す.図中に示す① は富益海象観測所(水深12.5m),②は日吉津海象観 測所(水深14m)の位置を示す.この2カ所におい て波浪観測が実施されている.この観測データと波 浪モデルを用いて皆生海岸における波高分布の予測 を試みた.この2地点以外の波浪を推定するために は、沖側より波浪変形計算を行う必要がある. 沖波の 条件を設定するには富益と日吉津それぞれにおいて 観測された波浪データを沖波に換算する必要がある が、台風通過時においては砕波している波浪も含ま れるため欠測している場合もある. そこで、気象庁 55年長期再解析データセット(JRA-55)の海上風を 外力に計算された空間解像度 4 分の高解像度の再解 析波浪データ (JRA-55-wave)¹⁾を適用した. JRA-55waveの計算点は図1中の③である.この地点の波浪 を沖の境界条件として美保湾全体の波浪計算を行い, 両観測点における波浪と比較し、モデルのキャリブ レーションを行うことで、美保湾全体の波浪予測結 果とすることができるものである. なお、JRA-55wave データの再現性は鳥取港 NOWPHAS データと 比較すると比較的相関が高く有用性が高いことがわ かる (図 2). なお、周期については過小評価するた め JRA-55-wave の解析結果を 1.2 倍ほどの補正を行 っている.また,波浪場計算では間瀬ら2)の回折を考 慮した波作用量平衡方程式を用いた.

キーワード 波浪変形, JRA-55, 数値計算, 皆生海岸 連絡先 〒680-0945 鳥取県鳥取市湖山町南4丁目101 鳥取大学工学部海岸工学研究室 TEL 0857-31-5300

図 2 NOWPHAS と JRA-55-wave の比較

3. 台風通過前後における波浪と計算条件

本研究では、2014 年 10 月に襲来した台風 19 号(以 下台風 1419 号)の通過前後の波浪について予測計算 を行った. 図 3 に台風通過前後の 10 月 12 日 0 時~ 16 日 6 時までの富益観測所,日吉津観測所および JRA-55-waveの波浪時系列を示す.JRA-55-wave によ る波高の再解析値は観測値と非常に近い傾向を示し ている.周期についてはJRA-55-waveの値を 1.28 倍 すると観測値の傾向と良く一致することがわかる. 波向きは北から東寄りの波を正の値で示しており, 台風通過前後 NNE から波が襲来し,富益では回折と 屈折により波向が NE 寄りになっていることがわか る.以上の結果から,JRA-55-waveの再解析値を用い て皆生海岸の波浪計算を試みた.

計算では,波高のピーク前後で台風通過前と通過 後に分け,波高 0.5m ごとに階級分けした諸量を平均 したものを計算条件とした.また,各計算条件を簡易 的な時系列順に並べたものを表1に示す.計算領域 は図1に示すとおりで,計算における x 軸ができる だけ汀線と直角方向になるように方位北向きを 40° とした.計算格子間隔を 20m, 方向集中度パラメー ター S_{max} は 10 とした.なお,沖から岸向きを正とし て,西寄の波向きを正としている.表1に示す計算 波向は計算上NNE~NWの範囲からの入射条件とな っている.

図 3 JRA-55-wave と観測結果の比較

14日

15日

16日

13日

12日

表	1	JRA-55-wave	を用い	、た計算条件
---	---	-------------	-----	--------

	Case	波高 (m)	周期 (s)	波向 (°)	計算 波向 (°)
通過前	1	0.97	6.9	31.9	8.1
	2	1.18	6.9	34.3	5.7
	3	1.72	5.9	46.2	-6.2
	4	2.24	6.7	42.6	-2.6
	5	2.75	7.5	39.4	0.6
	6	3.25	8.2	34.9	5.1
	7	3.83	9.1	28.2	11.8
通過後	8	4.02	9.6	24.9	15.1
	9	3.79	9.7	22.3	17.7
	10	3.21	10.2	23.5	16.5
	11	2.75	10.5	26.0	14.0
	12	2.25	10.3	27.2	12.8
	13	1.73	9.9	27.6	12.4
	14	1.22	9.0	27.7	12.3
	15	0.82	7.5	54.6	-14.6

4. 計算結果および考察

図4から9は富益海象観測所および日吉津海象観 測所付近における計算結果と観測結果を比較したも のである.富益および日吉津における波高の計算結 果は,観測結果と比較して定性的には一致している ものの,両観測点ともに過少に評価しており,特に富 益における波高は,観測結果と比較して大きな差が 生じている.周期の値は両観測点ともに定性的,定量 的に観測結果と一致していることがわかる.また,波 向き(正値:西寄り,負値:東寄り)に関しても観測 結果と計算結果が概ね一致している.

以上より、日吉津海象観測所付近では波高が過少 に評価されるものの、襲来する波浪を十分に再現で きているが、富益海象観測所付近では、波高に大きな 差があり、台風 1419 号における観測結果を十分に再 現することができなかった. 富益海象観測所付近に おける観測結果との差は、島根半島による回折の影 響が十分に計算されていないことが原因として考え られる.

図 4 富益における波高の観測結果・計算結果

図 5 富益における周期の観測結果・計算結果

図 6 富益における波向きの観測結果・計算結果

図 7 日吉津における波高の観測結果・計算結果

図 9 日吉津における波向きの観測結果・計算結果

図 10 および 11 は沿岸方向の波向分布を抽出した 例で,富益海象観測所付近以西,すなわち富益工区に おける,汀線に対する水深 10m 地点での波向きの値 および汀線に対する砕波点での波向きの値を示した ものである.図 12 および図 13 はそれぞれ水深 10m および砕波点おける波高の沿岸方向の分布を示したものである.

波高の沿岸方向の図に示すように砕波帯において, 波浪は汀線に対してに負の向き,すなわち西向きに 向か方向で侵入している.波高についても汀線に沿 って東から西側に向かって減少していることがわか る.なお,砕波点の波向きのばらつきについては,用 いた地形において,バーやトラフ地形の影響である 考えられる.

以上のことから,回折を考慮した波作用量方程式を 用いて皆生海岸全体の波高分布と波向分布を計算し た.定性的に極浅海域における波高と波向を計算で きることが示されたが,回折領域での波高の減衰が 大きいこと,波向に差異があることなど検討の余地 が残されている.

5. 終わりに

本研究では,皆生海岸全体を対象とした広域にお ける波浪予測モデルの適用性と波浪条件設定のため の手法を検討した.得られた結果を以下に示す.

(1) 波浪が回折の影響なく海岸に襲来する日吉津海 象観測所付近では,計算結果は観測結果を概ね再現 することができた.

(2) 弓ヶ浜半島による波の回折の影響を受ける富益 海象観測所付近では,計算結果と観測結果を比較に おいて,波高に大きな差が生じることがわかった.

(3) 富益海象観測所以西の,砕波帯における汀線に 対する波向きから,波浪が海岸に対してわずかに西 向きに襲来している.この結果は沿岸漂砂が西向き であることを示唆する.

以上のことから,回折波の計算において検討の余 地が残されているが,皆生海岸における沿岸漂砂の 方向を定性的ではあるが示すことが可能であること がわかった.

参考文献

1)Tomoya Shimura and Nobuhito Mori (2019) : Highresolution wave climate hindcast around Japan and its spectral representation, Coastal Engineering , Vol.151, pp.1-9. 2)間瀬肇,由比政年,雨森洋司,高山知司(2004): 波,流れ共存場における砕波および回折効果を考慮 した位相平均波浪変形予測モデルの構築,海岸工学 論文集,第51巻,pp.6-10.

