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Introduction 

Understanding flow characteristics in an open channel is 
crucial to assess velocity distribution and sediment transport 
patterns for bank protection. Numerical methods are widely 
used in modeling river hydrodynamics because of their cost 
effectiveness over experiments and field measurements. 
They are effective in clarifying the complex phenomena of 
flow structures and sediment transport after validation with 
reliable experimental datasets (Wormleaton, 2010). 
Understanding the mechanism of flow structures is useful 
for river engineers. 

Two-dimensional (2D) numerical methods have been used 
to simulate flows and temporal variations in bed 
topographies during floods. However, 2D numerical 
methods present limitations when defining complex 
phenomena, such as three-dimensional (3D) flows. Lane et 
al. (1999) compared the capabilities of 2D and 3D model 
approaches in calculating the flow process and sediment 
transport; their results showed that the 3D model 
demonstrated a higher predictive ability. Researchers have 
studied 3D models (Shukla and Shiono (2008); Morvan, et. 
al. (2002); Jing et. al. (2008)) and reported that they 
demonstrated good ability in simulating flow structures in 
meandering channels. However, the applications of 3D 
models are still limited to small-scale phenomena, such as 
local scouring in experimental channels because of their 
long computational time, large memory requirements, and 
numerous computational tasks. 

A number of depth-integrated models have been proposed 
to solve this problem. Uchida and Fukuoka (2016) 
developed a depth-integrated model, known as bottom 
velocity computation (BVC). The BVC method is an 
integrated multiscale simulation of flows and bed variations 
in rivers, which can evaluate vertical distributions of 
horizontal and bottom velocities by introducing depth-
averaged horizontal vorticity and horizontal momentum 
equations on a water surface to shallow water equations. 
The BVC method with shallow water assumption is known 
as simplified bottom velocity computation (SBVC). The 
objective of this study is to analyze the ability of the BVC 
method in calculating flow structures in a curved open 
channel by comparing it with experimental data. 
 
Experimental Conditions 

The configuration of the physical model of the experiment 
conducted by De Vriend (1979) is shown in Fig. 1. 
Measured data of water surface elevation and velocity along 
the channel at the cross sections are available. The 

experiment conditions for the simulated flow are presented 
in Table. 1. 

Table 1. Experiment condition for flow measurement. 
Bed slope So 0.0 
Discharge Q (m3/s) 0.18 
Depth (m) 0.189 
Width (m) 1.7 
Channel length (m) 23.35 
Inner radius r (m) 3.4 
Outer radius R (m) 5.1 

 
Numerical Model 

The BVC method was developed based on Eq. (1), which 
was derived by depth-integrating the horizontal vorticity 
with the shallow water assumption, in which the ratio of the 
representative water depth ℎ0  to representative horizontal 

scale 𝐿0  is small, i.e., 0 0 1
0 0
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s
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where 𝑢𝑏𝑖: bottom velocity, 𝑢𝑠𝑖: water surface velocity, Ω𝑗: 
depth-averaged vorticity, ℎ: water depth, 𝑤𝑠 , 𝑤𝑏 : vertical 
velocity on water surface and bottom, respectively, 𝑧𝑠 : 
water surface level, and 𝑧𝑏 : bottom level. The bottom 
velocity was evaluated by the water surface velocity and 
depth-averaged vorticity. To evaluate the bottom velocity 
shown in Eq. (1), the governing equations of the BVC 
method were composed of the depth-integrated horizontal 
vorticity (Eq. (2)) and water surface velocity (Eq. (3)), in 
addition to the depth-integrated continuity equation (Eq. 
(4)) and depth-integrated horizontal momentum equation 
(Eq. (5)). 
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where Ω𝑖is the depth-averaged horizontal vorticity in the i 
direction, 𝐸𝑅𝜎𝑖  the rotation term of the vertical vorticity, 
𝑃𝜔𝑖  the production term of vorticity from the bottom vortex 
layer, and 𝐷𝜔𝑖𝑗  the horizontal vorticity flux due to 
convection, rotation, dispersion, and turbulence diffusion. 
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where 𝑔 denotes gravity, and 𝑃𝑠𝑖the production term due to 
the shear stress acting on the thin water surface layer 𝛿𝑧𝑠. 

 0
U hh i

t xi


+ =

 
  (4) 

 
U U h hTU h zi j iji s bigh

t x x xj i j



 

  
+ = − − +

   
  (5) 

where 𝑈𝑖 is the depth-averaged horizontal velocity in the i 
direction, 𝜏𝑏𝑖  the bed shear stress, and 𝑇𝑖𝑗  the horizontal 
shear stress due to turbulence and vertical velocity 
distribution. The vertical distributions of the horizontal 
velocities are expressed by the cubic function (Eq. (6)) 
using the depth-averaged velocity 𝑈𝑖, velocity differences 
𝛿𝑢𝑖 , ∆𝑢𝑖𝑗, and dimensionless depth 𝜂. 

 ( ) ( )3 2 3 212 12 1 4 3u u u Ui i i i    =  − + + − + +  

 (6) 

where, Δ𝑢𝑖: 𝑢𝑠𝑖 − 𝑈𝑖 , 𝛿𝑢𝑖: 𝑢𝑠𝑖 − 𝑢𝑏𝑖 , 𝜂: (𝑧𝑠 − 𝑧𝑏)/ℎ. 

In this study, two numerical calculations were compared 
with the experiment by De Vriend (1979), as well as the 2D 
and SBVC models. 
 
Evaluation Method of The Dispersion Term 

The effect of the dispersion term in a curved channel has 
been observed by Lien et al. (1999); they discovered that the 
dispersion term was an important term for describing 
secondary flow effects in curved-flow simulations. 
Dispersion changed abruptly near the entrance and exit of 
the bend, which was attributed to the transverse convection 
of the momentum. 

In numerical model, conservation of some quantities such 
as momentum transfer is a basic property and it is important 
that the discretization scheme preserves the same feature. 
The discretization scheme caused some numerical 
oscillations since it loses most of the stability properties of 
the continuous problem. Many numerical methods were 
applied for these problems, such as the finite difference 
method (FDM), finite element method (FEM), and finite 
volume method (FVM). The finite volume methods (FVM) 
have been widely used as effective discretization techniques 
for partial differential equations (Hermeline, 2000; Manzini 
and Russo, 2008). The FVM method combining with 
upwind scheme has overcome the numerical oscillation 
(Liang and Zhao, 1997). 

In the present method, one of the upwind schemes (CIP-
CSL) was applied, whereas a centered scheme was applied 
in the dispersion term. The last term in Eq. (5) is the 
horizontal momentum transfer, which comprises a shear 
stress term due to molecular and turbulent motions and a 
dispersion term with vertical velocity distribution. 

 ' '
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where 𝑢𝑖′ = 𝑢𝑖 − 𝑈𝑖 . The dispersion term in Eq. (7) and the 
convection term in Eq. (5) are from the same convection 
term of the Reynolds-averaged Navier–Stokes equation 
before the depth-averaged integration.  

A discretization method with the dispersion term in Eq. (7) 
is proposed herein. Applying the first-order upwind scheme 
to momentum transfer 𝑢𝑖𝑢𝑗 , the dispersion term 𝐷𝑖𝑗  is 
derived as follows: 
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Eq. (8) was added to evaluate the dispersion term of the last 
term in Eq. (7) for the momentum equation in the i direction. 
 
 
 
 
 

 
Figure 1. De Vriend (1979) experiment (a) curved open 

channel (b) messes of velocity measuring point 
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Results and Discussion 

Fig. 2 shows a comparison of the depth-averaged velocity 
along the streamwise direction. The behavior of secondary 
flows in a curved channel has been discussed by de Vriend 
(1979); before entering the curved part, the velocity 
exhibited a uniform pattern. Once the velocity entered the 
curved part, the velocity near the inner bank decreased 
gradually, whereas the velocity near the outer bank 
increased. After leaving the curved part, the outer bank 
became dominant owing to the large intensity of the 
secondary flow, which was the transverse convection of 
momentum transfer. 

Fig. 2(a) shows a comparison between the de Vriend (1979) 
and 2D models. The depth-averaged velocity pattern 
became uniform after leaving the curved part. This shows 
that apart from being unable to describe complex 
phenomena, the 2D model cannot produce the secondary 
flow effect in a depth-averaged velocity distribution. Fig. 
2(b) shows the comparison between the de Vriend (1979) 
and SBVC models before adding the diffusion term. The 
calculation yielded a higher velocity along the outer wall 

than the experimental one; this was caused by the oscillation 
from the dispersion term. Meanwhile, SBVC_updated 
reproduced a depth-averaged velocity distribution that was 
similar to the experimental one, as shown in Fig. 2(c). 

Fig. 3 shows a comparison of secondary flow structures at 
cross section number 12. The SBVC method could 
reproduce secondary flow structures; the major secondary 
flow moved outward from the wall (moved from the inner 
wall to the outer wall). At the surface, the flow moved to the 
outer wall; at the bottom, the flow moved to the inner wall. 
However, the SBVC model could not reproduce velocity 
structures at the upper-outer and bottom-outer walls. The 
experimental data indicated that the flow moved 
anticlockwise. In the SBVC model, the flow moved outward, 
which was one of the limitations of the SBVC model. 
 
Conclusion 

In general, the proposed model demonstrated satisfactory 
performance compared with the experimental data. Both the 
2D and SBVC models produced a depth-averaged velocity 
distribution. Meanwhile, only the SBVC model could 

 
Figure 2. Depth average velocity distribution along the streamwise direction. (a) De Vriend (1979) and 2D, (b) De Vriend 

(1979) and SBVC, (c) De Vriend (1979) and SBVC_updated 
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describe secondary flow structures. A modified 
discretization for the dispersion term using the upwind 
scheme approach was introduced, and its merits over the 
previous scheme were presented. The results indicated that 
the scheme produced less numerical diffusion and 
dispersion than the centered scheme. 
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Figure 3. Comparison of secondary flow structures at cross-section 12 
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