礫床河川根谷川における河川改修後の流況改善効果の評価法

広島大学	学生会員	〇永井	秀和
広島大学	正会員	内田	龍彦
広島大学	フェロー会員	河原	能久

1. 背景と目的

大規模洪水時の河川治水機能を評価し,弱点箇所を 予測することが気候変動による洪水外力の増大が見込 まれる今,喫緊の課題になっている.河床材料や河道形 状などの特徴を広域で考慮できる洪水流解析は,河道 内危険個所を定量的に評価する有効な手段である.

太田川水系根谷川では, H26.8 豪雨時に戦後最大流量 が記録され大きな被害を受けた.整備計画目標流量が 見直され河道整備が進んだが, H30.7 豪雨時に再び同地 点で護岸が被害を受けた.本研究では, H26.8 豪雨と H30.7 豪雨による 2 つの洪水と,その洪水を受けた改修 前(H26.8)と一部改修後(H30.7)の河道を用いて洪水流 の再現を行い,河道の流下能力を量的・質的視点により 検討することを目的としている.

2. 実験方法と解析方法

H26.8 豪雨と H30.7 豪雨の流出解析を降雨流出氾濫 モデルである RRI (Rainfall-Runoff-Inundation model)¹⁾を適用し洪水流量ハイドログラフを定める. H30.7 豪雨での計算条件として,対象雨量を XRAIN-GIS 250mメッシュ,地盤データは基礎地図情報数値 標高モデル 10m メッシュ,土地利用はJAXA日本域 10m解像度を利用した.対象期間を 2018/7/5 1:00~ 2018/7/9 1:00 とし,2.16 k 地点新川橋水位観測所の観 測流量と比較して,計算ピーク流量を一致させるよう にパラメータを定めた.次に H26.8 豪雨流出解析では H30.7 豪雨のパラメータを利用し,対象期間を 2014/8/19 18:00~2014/8/21 00:00 とし,次に対象雨量 を XRAIN 250mメッシュで与え行った.計算ピーク流 量と整備計画流量(610m³/s)が概ね一致した.

3. 準三次元解析による洪水流の再現計算

危険個所の把握を定量的に行う為 SBVC 法(Shallow-Bottom-Velocity-Computation-Method)²⁾を用いて, 流れの三次元性を考慮し浅水流の仮定を用いた準三次 元解析である洪水流の計算を行う. SBVC 法は広域で 流れの解析が適用できる水深積分モデルの枠組みの

キーワード 洪水流解析,量的評価,質的評価

東京建設コンサルタンツ 正会員 八木 郁哉 国土交通省太田川河川事務所正会員 中野 光隆

Table.1 H26.8 豪雨再現計算利用データ

	H26.8豪雨	H30.7豪雨
解析条件	0.0k(太田川・三篠川合流点)~4.8k	0.0k(太田川・三篠川合流点)~4.8k
地形	横断測量データ・LPデータ(5m)	横断測量データ・LPデータ(1m)
上流端流量	H26.8流出解析結果	H30.7流出解析結果
下流端水位	縦断水面勾配一定	縦断水面勾配一定
相当粗度	D ₅₀ (H25定期河床材料調查)	D ₅₀ (H26定期河床材料調查)
分割数	流下方向5m分割,横断方向10分割	流下方向10m分割,横断方向10分割

積分モデルの枠組みの中で, 渦度を用いて鉛直方向の 流速分布を考慮できる準三次元解析法である.河床を 固定床として各豪雨の再現計算を行い, 痕跡水位・観 測水位と比較した.上下流端共に 300m 程助走区間を 設けた.初期条件は流れが定常となったところで計算 を開始している.また各豪雨の再現計算では痕跡水位 と計算水位が概ね一致したが,H26.8豪雨の 0~0.6km 地点などの誤差の大きい地点では河床変動計算にて土 砂輸送の考慮をしていなかった為と考えている.

|連絡先 〒739-8527 東広島市鏡山 1-4-1 広島大学院先進理工系科学研究科社会基盤環境工学プログラム 水工学研究室

Fig.5 改修前後の左右岸縦断乱れエネルギーの比較 (1)量的流下能力評価

右左岸の縦断水面形を比べることで水位がどの程度 変化したかを検討する.縦断水面形には,計算期間にお ける各メッシュの水位標高の最大値を用いる. Fig.4 か ら河川改修区間において, 3.8k~4.0km 区間で計画高水 位以下に低減出来ている.また改修により 3.8km・4.2km 地点付近の氾濫の危険性を下げる効果が見られ量的な 河川事業により河川の流下能力が改善されたといえる. (2)質的流下能力評価

八木ら³は乱れエネルギーが大きい箇所では, 河岸侵 食の危険性が高くなることを示している. 乱れの局所 仮定をし, 各流速より乱れエネルギーk は式(1)のように 示される.

$$k = \frac{4C_h C_\mu}{5C'_{\varepsilon}^2} (8\Delta u_i^2 - 7\Delta u_i \delta u_i + 2\delta u_i^2)$$
(1)

Ch=2.25, Cµ=0.09, C'ε=1.7, usi:i 方向の水表面流速(m/s), ubi:i 方向の底面流速(m/s), Ui:i 方向の平均流速(m/s), Δ ui=usi-Ui, δ ui=usi-ubi である.水表面流速・底面流速 場と乱れエネルギーの平面分布と右左岸縦断分布を用 いた.各流速場の検証は流量ピーク時のものを用いて おり,乱れエネルギーは計算期間の各メッシュ乱れエ ネルギー最大値を用いている.

各流速場の検討から水表面流速・底面流速が河川事 業実施区間や拡幅事業途中区間にて低減しており,全 体でみると流速は大きく低減した.上市堰提直下では 各流速が他の地点よりも大きくなる傾向が見られた. 乱れエネルギーの縦断分布をFig.5と乱れエネルギーの 平面図をFig.6に示す.3.5~3.8kmの乱れエネルギーが 大きく低減していた.上市堰直下では全体的に値は低 減したものの,一部改修後(H30.7)の河道で見てみる

と 0~4.8km 区間では他の区間よりも比較的高い値であ った.Fig.6の平面分布図より比較すると,一部改修河 道にて拡幅箇所である 3.8~4.0km 地点において危険個 所が減少していたが,上市堰提付近で乱れエネルギー の値が改修後も他の地点に比べて大きいままであった.

5. 結論

量的流下能力評価により河川改修が洪水時の水位を 低減させ事業実施 3.8k~4.0km 区間で計画高水位以下 の水位で流下できることを示した.更に質的流下能力 評価により水表面流速と底面流速が河川事業実施区間 で大きく低減しており,かつ乱れエネルギーより河道 内の危険個所の減少と局所洗掘現象による危険性が低 減していることがわかった.河道事業により変化した 河道の危険度が低減した一方で,堰付近では危険個所 が変化せず,河道の量的・質的に流下能力を検討する 有効性が示した.更に引堤による2倍程度の拡幅は水 位のみならず,流れの3次元性からもたらされる河岸 浸食の危険性も低減させることを示した.

参考文献

 佐山敬洋,立川康人,賓馨,市川温:広域分布流出 予測システムの開発とダム群治水効果の評価,土木学 会論文集,No. 803/ II 73, pp.13-27, 2005.
内田龍彦,福岡捷二:底面流速解法による連続する 水没水制 群を有する流れと河床変動の解析,土木学 会論文集 B1 Vol. 67, No. 1, pp.16-29, 2011.
八木郁哉,内田龍彦,河原能久:大規模洪水時にお ける河岸侵食 危険箇所の検出法,河川技術論文集, 第 25 巻, pp.729-734, 2019.