UAV 遠隔打音検査を意識した模擬損傷 RC 床版の音響特性と打撃力に関する考察

徳山工業高等専門学校	学生会員	〇中村	智哉
徳山工業高等専門学校	非会員	宮﨑	亮一
徳山工業高等専門学校	非会員	藤井	貴一

1. はじめに

近年,UAV (Unmanned Aerial Vehicle)を活用した打 音による橋梁点検技術が積極的に開発されている.それ らの機体には,垂直または水平方向に打撃するためのハ ンマー機構(ピストン式または射出式)と打撃音収録用 のマイクが搭載されており,UAVが点検箇所を打撃し た音を地上で技術者がヘッドホンで直接聞いて判断する 仕組みが採用されることが多い.これらの機体はすでに 実装試験が実施され,実用化されている技術もあるが, ハンマー機構や水平駆動機構といった様々な装置を搭載 し,かつ打撃時の反力に耐えるためにUAV自体が重く 大型化する傾向にあることから,飛行時間や給電ケーブ ル,狭隘部への侵入困難などの課題が残されている.

このことから、有木ら¹はRC床版下面への適用を意識 した回転振動式のハンマー機構を考案し、ハンマー機構 とUAV自身の軽量化と数Hzの連続打撃による遠隔打音 検査の可能性を見出したが、収録した音源データに雑音 が多く含まれることに加え、損傷検知に必要な回転振動 ハンマーの打撃力についても未検討であることから、そ の実用化には多くの課題が残されている.

以上のことから、本研究では、収録した単発打撃音の 音響特性を分析することで、損傷検知に必要な打撃力の 大きさを推定するとともに、打撃力の大きさがその音響 特性に与える影響について考察する.

2. 試作UAVによる連続打撃音の収録試験

(1) 打撃音収録試験の概要と UAV 機体について

本研究に先立ち,連続打撃によるUAV遠隔打音点検 の現状を把握し,解決すべき技術的課題を洗い出すため, 有木ら¹⁾のUAV機体と模擬損傷を有するRC床版供試体 を用いて連続打撃音の収録試験を実施した.

写真-1に収録試験の様子を示す. 模擬損傷を有する

徳山工業高等専門学校	正会員	海田	辰将
徳山工業高等専門学校	非会員	池田	将晃
広島大学名誉教授 フェ	ェロー会員	藤井	堅

写真-1 UAVによる打撃音収録試験

RC床版¹⁾を吊り下げ,写真のように棒で支えたUAV機体を下から押し当てて打撃し,模擬損傷の大きさ,かぶり厚,プロペラノイズの有無などを変化させ,計42パターンの収録環境について打撃音を収録した.

図-1に,使用したRC床版供試体の概要を示す.外寸 は1500 mm×1500 mm×200 mmである.図中に赤線で示す ように,50~200 mm四方の段ボールが主鉄筋とかぶり の間に挿入されており,鉄筋の腐食によって生じた「浮 き」を模擬している.かぶり厚は挿入された段ボールの 列ごとに,それぞれ30 mmと70 mmである.

写真-2に,実験で使用した試作UAVを示す.機体中 央に**写真-3**に示すような回転振動式打撃ハンマーと, その直下に打撃音収録用のマイクが装着されている.こ

写真-2 試験に使用した UAV

写真-3 回転振動式ハンマー

のハンマーは、ヘッド内で回転する振り子の作用によっ てヘッドを上下に振動させるため連続打撃が可能であり、 ピストン式ハンマーに比べて小型軽量である.

(2) UAV による打音検査の課題

a) ハンマーに必要な打撃力と打撃の安定性

回転振動式打撃ハンマーは小型軽量であり,連続打撃 が可能などのメリットは大きいものの,人間による通常 の打音点検よりも打撃力がかなり小さいため,深い位置 にある損傷を発見しづらいと考えられる.

また,打撃中にハンマーヘッドが不規則に跳ねる現象 が確認され,安定した打撃力が得られていないことも明 らかとなった.これらのことから,UAV 打音検査によ る検出率を向上させるためには,損傷の検出に最低限必 要なハンマーの打撃力について検討し,かつ安定した打 撃力が得られるようハンマーの改良に活かす必要がある.

b) 打撃音収録方法と雑音抑制に関する考察

打撃音とともに収録される環境音(雑音)には,プロ ペラ音,モーター音以外にも現場状況に応じて風切音や 人の声,車両の走行音など様々な音が含まれる.このこ とから,音の指向性を考慮した効果的な音源データの取 得方法や音源データをリアルタイムに解析し,雑音抑制 できる音響信号処理技術の開発が望まれる.

図-2 RC 供試体の概略図

表−1 RC 供試体寸法

供試体名	20-40	30-50	
外寸法 [mm]	400×400×200		
鉄筋	主鉄筋:D19 (SD345) 配力鉄筋:D16 (SD345) ピッチ:100		
スチレンボード寸法 [mm]	200×200×5		
呼び強度(目標値) [N/mm ²]	28		
かぶり厚さ(C _i) [mm]	20	30	
かぶり厚さ(C2)[mm]	40	50	

表-2 コンクリートの配合設計

(呼び強度) 配合強度	W/C	スランプ 又はフロー	s/a	水	セメント
(N/mm^2)	(%)	(cm)	(%)	(kg/m ³)	(kg/m ³)
(24) 28.2	57	8	49.6	164	288
細骨材 粗骨材		混和剤	混和剤		
砕砂A(3A)	石灰石砕砂	砕石1505A	砕石2010A	766714 A1	APPLIE H1
(kg	g/m ³) (kg/m ³)		(kg/m ³)	(kg/m ³)	

3. 模擬損傷を有する小型 RC 床版供試体

本研究では、コンクリート表面における打撃音の音響 特性を明らかにするため、環境雑音および打撃時の反響 音ができるだけ少ない状況で打撃試験を行う必要がある. このことから、小型の供試体を新たに作製し、簡易無響 室において単発打撃試験を実施した.

図-2, 表-1 に本研究で作製した小型供試体の概要を 示す.供試体寸法は 400 mm×400 mm×200 mmの RC床 版の一部とし,図に示すように主鉄筋(D19:SD345) と配力鉄筋(D16:SD345)が格子状に配置され,その 中央に 200 mm×200 mm×5 mm のスチレンボードを挿入 してコンクリートの「浮き」を表現した²⁾.本供試体は 両表面で異なるかぶり厚(C₁, C₂)を有したものを 2 体 作製しており,かぶり厚は,一般的な RC 構造物の設計 を参考に 20 mm と 40 mm, 30 mm と 50 mm にそれぞれ 設定した.本供試体に用いたコンクリートの配合設計を **表-2** に示す.円柱供試体の圧縮試験により圧縮強度を 測定した結果,供試体 20-40 では圧縮強度 σ_b =34.6 N/mm2, 供試体 30-50 では σ_b =34.6 N/mm2 であった.

4. 室内打撃試験

(1) 実験方法

図-3 および写真-4 に室内打撃試験の概要を示す.図 に示すように、ピン支持された RC 点検用のテストハン マー(長さ 600 mm)を所定の高さhまで糸で吊り上げ た後,自由落下によって振り下ろして供試体を打撃した. 打撃点から 0.5 m 離れた点に設置した指向性マイクで打 撃音を収録した.実験では,各供試体の損傷部(スチレ ンボード)の中央を打撃し,これと比較するために供試 体の端部から 50 mm の箇所を健全部として打撃した.

(2) 打撃パターン

本実験では、4種類のかぶり厚(20,30,40,50 mm)に 対してハンマーヘッドの高さhを10 cm~60 cm まで10 cmごとに変化させており、損傷部と健全部を各24パタ ーンずつ、計48パターンの打撃を行った.また、打撃 点のズレによる収録音のばらつきを抑えるため、1パタ ーンにつき3回の打撃試験を行った.その後、収録した 音源から非破壊サウンド編集ソフトAudacity(ver2.3.3)を 用いて図-4に示すような時刻歴波形から目的の打撃音 に関する波形のみを抽出、周波数分析し、スペクトログ ラム等によって可視化した.

(3) 実験結果および考察

a) 打撃エネルギーの大きさと音響特性

図-5に、かぶり厚20 mmの供試体の健全部と損傷部を それぞれh=10 cm、60 cmから打撃して得られた各周波数 の音量分布を示す. 図の横軸は周波数[kHz],縦軸は音 源データごとに異なる音量レベルの差を正規化した音量 [dB]である.

図-5(a), (b)に示した健全部および図(c), (d)に示した損 傷部どうしの比較から,ハンマーの高さ(打撃力)を 10cmから60cmに変えても,その音量分布には損傷の検 知のために有意な差が見られないことが確認できる.こ のことから,打撃力と音量の分布形には損傷検知に関す る直接的な関係性は薄いと考えられる.

写真-4 室内打撃試験セットアップ状況

一方,損傷の有無が音響特性に与える影響に着目すると,図-5(a),(c)の比較から,h=10 cmの場合には,損傷

(c) 損傷部,かぶり厚20mm (d) 損傷部,かぶり厚50mm
図-6 かぶり厚によるスペクトログラムの比較 (h=10cm)

部の打撃において 15 kHz 以上の高い周波数帯の音量が 健全部よりも増加していることが確認できる.しかし, h=60 cm から打撃した図-5(b), (d)には,そのような特徴 は見受けられない.以上の結果から,点検者の聴覚によ って損傷を判断する場合には,より大きな打撃音の方が 判別しやすいと予想されるが,その影響が必ずしも音響 特性として現れるとは限らないことがわかった.

b) 損傷部と健全部の音響特性の比較

打撃力に関する前項での考察を踏まえ、本項では h=10 cmの打撃音に着目し、スペクトログラムを用いて 健全部と損傷部の周波数特性の違いについて考察した.

図-6に健全部と損傷部を打撃した時のスペクトログ ラムの一例を示す.1パターンにつき3回の打撃から得た 音源データを時間的に繋ぎ合わせてスペクトログラムと して可視化している.図-6(a),(b)に示したスペクトログ ラムより,健全部では,かぶり厚にかかわらず,ほぼ一 定の周波数 (=3kHz) で明確なピークが発現しているこ とが特徴的である.また,このピーク値ほどではないが, 健全部は損傷部に比べて高いスペクトル強度を示す周波 数が比較的広く分布しているようにもみえる.

一方, 図-6(c), (d)に示す損傷部では,スペクトルピー クが3 kHzではない周波数でばらつきが大きくなってお り,健全部と異なる周波数でピークとなっていることに 気づく.このことから,コンクリートに内部損傷を有す る場合にはスペクトログラムのピーク値が発現する周波 数に明確な違いが出ることがわかった.また,かぶり厚 が20~50 mmの場合には,損傷がいずれの深さにあった としても,本実験のような10 cm程度の高さからの自由 落下による打撃力によって損傷の有無が判断できる可能 性があることが分かった.

5. おわりに

本研究では、模擬損傷を有する RC 床版供試体を対象 とした室内打撃試験を実施し、収録音源の周波数を分析 することで、打撃力の大きさが音響特性に及ぼす影響お よび損傷部と健全部の音響特性の違いを明らかにした. 本研究から得られた主な成果を以下に示す.

- 打撃エネルギーを増加させても、その打撃音の周 波数特性において損傷が検知できるほどの有意な 差が表れるとは考え難い.
- かぶり厚に着目した打撃試験から、健全部では、 いずれのかぶり厚さにおいても、ほぼ一定の周波数(=3 kHz)で明確なピークが発現していること が確認された.一方、損傷部では周波数 2~4 kHzの 間でピークとなり大きなばらつきを有しているこ とが確認された.
- 3) 2)に示した結果は、今回の実験で設定した最小の打 撃力よりもさらに小さい打撃力によって損傷が検 知できる可能性を示唆しており、回転振動式ハン マーヘッドを搭載したUAVと音響信号処理を併用 することで遠隔打音検査における様々なメリット が期待できることを示した。

謝辞:本研究にあたりルーチェサーチ株式会社,株式 会社シーエム・エンジニアリングより多大なご支援・ご 協力を賜りました.ここに記して謝意を表します.

参考文献

- 有木崚将:UAV を活用した遠隔打音検査技術の開発,平 成29年度 広島大学大学院工学研究科 社会基盤環境工学 専攻 修士論文,2017.2.
- 新保弘, 溝渕利明, 野嶋潤一郎: 打音探査への機械学習 の適用に関する基礎的検討, コンクリート工学年次論文 集, Vol.41, No.1, pp.1829-1834, 2019.