-15

不等流における非水没円柱群の流体力特性とその評価法

北海道庁	正会員()阿戸	理樹
広島大学大学院工学研究科	正会員	内田	龍彦

広島大学大学院工学研究科 学生会員 小林 大祐 広島大学大学院工学研究科 正会員 河原 能久

1. 目的

近年,地球温暖化の影響による豪雨が各地で多発 し,流下物が蓄積することにより,強い不等流性を 伴った流れが橋脚周りで生じ,洪水被害が増加して いる.そのため,抵抗体の流体力特性を明らかにす ることは重要である.しかし,配置・形状・フルー ド数 Fr やレイノルズ数 Re などによる抗力係数の変 化に着目した研究は数多く存在するものの,不等流 性が流体力に与える影響についての研究は数が少な いように思われる.そこで,流れの不等流性が非水 没円柱群に与える影響を明らかにすることを目的と する.

2. 実験方法

実験水路を図-1に示す.等流・不等流の水面形と円 柱周りの水面形を測定するために,幅 B=30 cm,縦 断長さ 3.0 m(水路 I)と幅 B=80 cm,縦断長さ 24 m(水 路 II)の二つの可変勾配水路を使用した.抵抗体には 円柱を用いており,水路 Iには直径 d=1 cm,水路 IIには直径 d=10 cm のものを千鳥状に配置している(配 置密度 $\lambda_I=0.0588$, $\lambda_I=0.0981$).設置・測定範囲は水 路 Iの場合,下流端から 2 mの区間(Case L)と下流端 1 m~2 mの区間(Case S)の 2パターンでそれぞれ縦 断方向に 20 cm間隔で水深を測定している.水路 IIの場合,上流端から 8 m~11 mの区間で円柱群の中 心の円柱を代表円柱とし水深の測定を行った.

3. 等流条件における円柱群の抵抗特性

開水路流の抗力係数の理論的導出を行う.一様流中 の円柱周りの圧力変化を $\Delta P(\theta)$ とすると,開水路では それに応じて円柱周りで水深変化 $\Delta h(\theta)$ が生じる.静 水圧分布を仮定すると, $\Delta h(\theta)$ は式(1)で定義される.

$$\Delta h(\theta) = \frac{\Delta P(\theta)}{\rho g} = \frac{U^2}{2g} C_p(\theta) \tag{1}$$

ここに、 ρ :水の密度、g:重力加速度、U:x方向の 断面平均流速(U=Q/Bh)、 $C_p(\theta)$:圧力係数である.

開水路では、円柱前面では作用面積が増大し、背

キーワード 抗力係数,加速流,圧力勾配,水面形計算 連絡先 〒730-8527 東広島市鏡山1丁目4-1 082(424)7819

図-1 実験水路(左図:水路I,右図:水路I) 面では水深が低下によって,圧力が大気圧以下とな らないため,一様中の流体力と異なる.本研究では, 開水路流中の流体力は一様流の円柱周りの流体力と 水深変化によって生じる作用面の変化を表す項に分 けて考える.即ち,円柱周りの圧力の積分範囲を河 床から一様水深 h までの区間と円柱周りで生じる水 深変化 Δh の区間で分け,水深積分することで開水路 流中の流体力 F を表し,整理すると開水路中の抗力 係数 C_Dは,式(2),(3)で示される.

$$C_D = C_{D0} + \alpha F r^2 C_{D0} \tag{2}$$

$$\alpha = \frac{1}{8} \frac{\int_{0}^{2\pi} C_{P} |C_{P}| \cos \theta d\theta}{\left(\int_{0}^{2\pi} C_{P} \cos \theta d\theta\right)^{2}} \times 4C_{D0}^{2} = \frac{1}{2} \frac{\int_{0}^{2\pi} C_{P} |C_{P}| \cos \theta d\theta}{C_{D0}^{2}}$$
(3)

ここに、 C_{D0} は一様流中の抗力係数であり、水面による抗力係数の影響が表れない $Fr \rightarrow 0$ の場合の抗力係数となる.

図-2 に各等流実験値・理論式から求められた抗力係数 $C_D \ge Fr$ 数の関係を示す.理論式は実験値の抗力係数の Fr数による減少を説明できている.

4. 不等流条件における円柱群の抵抗特性

式(2)の開水路の抗力係数を用いて流体力を式(4)で 評価する.

$$NF = \frac{1}{2}\rho C_D NAU^2 \tag{4}$$

そして,流体力を用いて,水面形の式(5)を計算する.

$$\frac{dh}{dx} = \frac{-\frac{dz_b}{dx} - \frac{U^2 n^2}{h^{4/3}} - \frac{NF}{\rho g h}}{1 - Fr^2}$$
(5)

ここに, *z*_b:河床高, *n*:底面のマニングの粗度係数 (*n*=0.012), *h*:水深, *N*:単位面積内の抵抗体数, *F*: 抵抗体1つ当たりの流体力である.

図-3に不等流の水面形計算と実験の結果を示す.加 速流の計算値は実験値を下回っており,解析では円 柱にかかる流体力を過小評価していることが分かる. この加速流における流体力増加のメカニズムを調べ るため,水路 IIで等流と加速流を発生させ縦断水深 分布を比較する.両者を比較するために,実験値で ある円柱前面の水深 Z_{s0} を基準とし,任意の地点の水 深 Z_s との差 Δh_s として表した.また速度水頭 $U^2/2g$ で無次元化することで水深降下量 Δh_* の比較を行っ た.式(5)に水深の降下量 Δh_* の定義式を示す.

$$\Delta h_* = \frac{\Delta h_s}{2gU^2} = \frac{Z_s - Z_{s0}}{2gU^2} + 1$$
(5)

図-4 に等流・加速流条件の無次元水深降下量の分布 を示す.実線で囲われている部分は,円柱の範囲を 示している.円柱上流側では無次元水面形に大きな 差は現れていないが,円柱後背部以降は等流と加速 流の間で一定の差が現れている.これは,流れの全 体的な圧力勾配により剥離域内の圧力に差が生じて いることを示している.そこで,この圧力勾配によ る加速流れにおける流体力の増加分を考慮するため に剥離域の長さを定数 k と抵抗体の幅 d を用いて表 し,剥離域の圧力低下による流体力を加えた式(6)に よって抵抗体の流体力を仮定する.

$$NF = \frac{1}{2}\rho C_D NAU^2 - \rho g NAkd \frac{dh}{dx}$$
(6)

式(6)を式(3)に代入し、水面形の式を求めた. 定数 k は計算水面形と実験水面形をあわせるため k=2 を与 えた. 図-3 の本手法による計算結果を見ると加速流 内の水位変化は圧力勾配を考慮した本手法により改 善が見られる.

5. 結論

本研究は不等流における円柱群の流体力特性に着 目し、実験と水面形の計算結果から議論を行った. 以下に本研究で得られた主要な成果を示す.

図-2 理論式(2),(3)と実験値の比較

図-3 提案した評価式を使用した水面形の計算式

図−4 等流と加速流の縦断的な無次元水深

- 加速流れの水面形の計算の際に生じた抵抗の過 小評価は、無次元水面形から、圧力の縦断勾配 によって剥離域内の圧力が低下することが原因 であることを示した。
- 剥離域内の圧力低下を考慮した評価式を提案
 し、計算に組み込むことで加速流れの再現精度
 が大きく改善されることを示した.

参考文献

- 林健二郎,藤井優宏,重村利幸:開水路中における円柱群に作用する流体力に関する実験,水工 学論文集,Vol.45,pp.475-480,2001.
- Rouse, H.: elementary mechanics of fluids, Dover publication, Inc, New York, 1946.