トンネル覆エコンクリートの外力によるひび割れに関する基礎的研究

松江工業高等専門学校 生産・建設システム工学専攻 学生会員 〇持田 新太郎 松江工業高等専門学校 環境・建設工学科 助教 正会員 岡崎 泰幸

1. はじめに

山岳トンネルでは、多くの場合、支保工で地山を安 定させ、地山の変形が収束してから覆工を施工するた め、通常、覆工には力学的な性能を付加させないこと が多い¹⁾.しかし、実際は外力を受けたようなひび割れ が発生している場合が多く、どのような外力によって どのようなひび割れが発生し、それが覆工の安全性に どのような影響を及ぼすかは明らかになっていない. そこで、本研究では、トンネル覆エコンクリートの外 力によるひび割れ発生メカニズムを明らかにする第一 歩として、供試体サイズでのコンクリート圧縮試験を 行い、数値解析によって、供試体の応力ひずみ関係と ひび割れの進展を再現することを目的とした.本概要 では、供試体が破断した応力下において、ひび割れの 進展及びそれに伴う破断状況が数値解析上で再現でき るかを検討した.

2. 実験方法

(1) コンクリート供試体の作成条件

コンクリート供試体は φ100×200mm とし,表1に示 す条件を基にコンクリートの配合を決定した(表2参 照).また,供試体は1日で脱型を行い,恒温室で室温 20℃,湿度 60%の環境で養生させた.そして材齢28日 で圧縮試験を行うこととした.

(2) 計測方法

(1) で作成したコンクリート供試体の中央部にひず みゲージ (Strain Gauges PL-60-11-1LJC-F) を鉛直方向 と水平方向に,等間隔に交互に貼り付けた (図 1 左側 参照). そして, φ10×20cm 用鋼製キャップ (ZKT-205 φ102 ZENNAMA JIS A 1108) をつけた後,全自動コンク リート耐圧縮試験機 (Hi-ACTIS-1000) を用いて,圧縮 試験を行い,データロガー (NR-600 ST-04,オムニエー ス III RA2300A) を用いて,コンクリート供試体の応 力とひずみを計測した.

3. 実験結果

計測した応力とひずみの関係を各方向のひずみ毎に 平均した結果を図2に示す.ここで、ひずみはひずみ ゲージの収縮方向を正、膨張方向を負としている.ま た、圧縮試験後の供試体の写真を図1の右側に示す. 図2より、応力ひずみ関係が徐々に非線形となり、そ の後急激に応力が低下していることがわかる.これは コンクリート供試体が塑性化した後に、破断したため である.

表1 コンクリート供試体の配合条件²⁾

項目	記号	単位	条件	
設計基準強度	f' _{ck}	N/mm ²	18~24N/mm ²	
水セメント比	W/C	%	65%以下	
単位水量	W	kg/m ³	175kg/m ³ 以下 (粗骨材の最大寸法20~25mm)	
粗骨材の最 大寸法		mm	20~25mm (単位水量の上限が175kg/m ³)	
スランプ	_	cm	12~15cm	
			<u></u>	

表2 コンクリート配合²⁾

W/C	s/a	単	ū位量	スランプ				
%	%	W	С	S	G	(cm)		
60	45	122	316	847	970	14.5		
※素素大索(5,9.7%) 6,0.0%) いて様式								

図1 圧縮試験前後の供試体

図2 応力-ひずみ関係

キーワード 覆工コンクリート,ひび割れ,数値解析 連絡先 〒690-8518 島根県松江市西生馬町14-4 松江工業高等専門学校 岡崎研究室 TEL0852-36-5224

4. 解析方法

本章では、図2の供試体の破断時の応力下において、 ひび割れの進展およびそれに伴う破断状況を数値解析 で再現できるかを検討する.なお、本研究のコンクリ ート供試体の解析には、三次元有限差分法コード FLAC3Dを用いる.

(1) 解析モデルの諸条件

FLAC3Dver5.0で用いたコンクリート供試体の解析モ デルの概略図を図3に示す.本検討では,供試体の破 断時の応力下において,ひび割れの進展およびそれに 伴う破断状況を数値解析によって再現できるかの検討 を目的としているため,解析モデルのSolid 要素の材料 構成則は簡易的に線形弾性体とした.一方,実験から 既知しているひび割れ発生断面にはInterface要素を挿 入した.Interface要素とは,モールクーロンすべり則に おいて,物体の接触面で生じるすべりを表現し,簡易 的にひび割れなどを表現できる要素である.上記に説 明した要素の解析物性値を**表**3に示す.なお,垂直剛 性 k_n とせん断剛性 k_s については式(1)に基づいて算出し た³.

$$k_n = k_s = max \left[\left(K + \frac{4}{3} G \right) / \Delta Z_{min} \right]$$
 (1)

ここに、K: コンクリートの体積弾性係数、G: コンク
リートのせん断弾性係数、 ΔZ_{min}:境界面法線方向上
の最小要素幅(図3参照)

(2) 応力とひずみの計測

本解析では,解析モデルの上面に一定に増加する応 力を与え続け,随時解析モデル上面のひずみを計測し た.

5. 解析結果と実験結果の比較

(1) 解析実施前後のモデルの比較

解析前後のモデルの写真を図4に示す.図4より, 解析モデルが最大応力14MPa付近に達すると,モデル の上部が破断していることがわかる.つまり,供試体 の破断時の応力下において,ひび割れの進展およびそ れに伴う破断状況が数値解析上で表現できたといえる.

(2) 応力ひずみ曲線の比較と考察

実験結果と解析結果の応力と縦ひずみの関係を比較 したものを図5に示す.図5より,解析結果の応力ひ ずみ曲線が,破断時の応力に達したときに応力が減少 していることがわかる.これは,実験結果から求めた 応力ひずみ曲線と同様な傾向であり,両者の結果とも

表3 解析物性值

垂直剛性kn (MPa/m)	2.808×10^{6}	Interface要素
せん断剛性ks (MPa/m)	2.808×10^{6}	
粘着力C (MPa)	7.0	
摩擦角φ (Deg)	0.0	
ポアソン比v	0.2	Solid要素
静弹性係数Ec (Mpa)	8938	

図3 解析モデル略図

図4 解析実施前後のモデルの破断状況(変形 10 倍)

図5 実験結果と解析結果の比較

に供試体の破断に伴う応力の減少が確認できた.

6. まとめと今後の課題

コンクリート供試体の解析を行い,実験時の供試体 の破断時の応力下におけるひび割れの進展およびそれ に伴う破断状況を簡易的に再現することができた.今 後は,供試体が破断に至るまでの応力ひずみ曲線の再 現を実施していきたいと考えている

参考文献

 1) 土木学会: 2016 年制定トンネル標準示方書 [共通編]・同 解説 / [山岳工法編]・同解説, p.110, 2016.

 2) 土木学会: コンクリートライブラリー 102 トンネルコン クリート施工指針(案), pp. 13 – 20, 2007.

3) Itasca Consulting Group, Inc.: Fast Lagrangian Analysis of Continua in 3 Dimensions (FLAC3D Version 5.0), Theory and Background, Section 3: Interface, pp.1-14, 2012.