山口大学大学院創成科学研究科 学生会員 〇大野智貴 元山口大学大学院創成科学研究科 学生会員 北村彩絵 元山口大学大学院創成科学研究科 正会員 森本真吾 山口大学大学院創成科学研究科 正会員 進士正人

1. はじめに

めがねトンネルは、センターピラー(以下 CP と称 する)と呼ばれる中央隔壁を共有する 2 本のトンネ ルが近接した状態で施工されるトンネル形状である. そのため、単線トンネルとは異なり、めがねトンネル は施工時に相互影響を受けやすい構造である.特に、 本研究で対象とするめがねトンネル(以下 A トンネ ルと称する)は、表-1に示すように、I 期線とII 期 線が異なる施工法で施工されたという特殊な施工環 境であったこともあり、I 期線覆工の片側にひび割 れが集中的に発生している¹⁾.(図-1)

本研究では、A トンネルの覆工に生じるひび割れ の発生メカニズムの解明を目的として三次元解析を 行う.まず、II 期線掘削時における現場計測結果よ り、地山物性およびトンネル覆工応力の再現を行っ た.次に、図-1 に示すひび割れ状況を踏まえ、トン ネル周辺地山の挙動を再現することでひび割れ発生 要因を推定した.

2. Ⅱ期線建設当時の挙動再現

2.1 掘削解析モデルと解析条件

本研究では三次元有限差分法解析コード FLAC3D を用いた. 図-2 に地山モデルを示す. 地山モデルは, 等高線をもと地表面の地形を再現した. また, Ⅱ期線 施工による I 期線への影響を再現するために, Ⅱ期 線掘削は 1m 毎の逐次掘削で行った. 拘束条件は上 面以外の五面固定とした.

2.2 解析物性値の設定

既存資料²⁾では,周辺地山の物性値が明らかになっていない.そこで,II期線施工時の計測データ²⁾ (坑内変位・地表面沈下量)に最もよく一致するよう

図-1 Aトンネル変状展開図

図-2 解析モデル

表−2 解析物性値					
	変形係数	ポアソン比	単位体積重量	粘着力	内部摩擦角
	D(N/mm ²)	v	$\gamma (kg/m^3)$	c(MPa)	\$ (°)
DIII	8	0.40	1850	0.005	30
DII	65	0.35	2000	0.008	30
CP直下	12	0.40	2000	0.008	30
コンクリート	20000	0.30	2400	2000	45
パイプルーフ	1000	0.30	1900	0.04	35
吹付け	9235	0.25	2400	2000	45

解析を繰り返すことで物性値を同定した.

図-2 に示すように、A トンネルは I 期線竣工~Ⅱ 期線施工まで約 16 年の年月が空いたため、CP 直下 地山が地下水等により脆弱化していると仮定した. 計 24 回の解析によって得られた物性値一覧を表-2 に示す.また、この物性値を用いた時の計測データ と解析値の比較を図-3 に示す.この結果より、Ⅱ期 線施工時の挙動が再現できていると考え、表-2の

キーワード めがねトンネル, 偏在ひび割れ, 三次元数値解析

連絡先 〒755-8611 宇部市常盤台2丁目16番1号 山口大学大学院創成科学研究科 進士研究室

TEL 0836-85-93

物性値を次章で用いた.

3. 現在の覆工変状の再現

3.1 解析条件

Ⅱ期線竣工から17年経った現在のトンネル挙動を 再現するために,前項の挙動再現モデルに対して土 被り荷重の載荷を行った.載荷にあたってはテルツ ァーギの緩み圧の考え³⁾に準拠し,緩み圧として地 山の自重が覆工に作用すると仮定した.載荷領域は, 複数ケース行った中で最も応力への影響が大きかっ た領域を用いた.荷重載荷の概要図を図-4に示す.

3.2 解析結果と考察

図-5 にⅡ期線掘削前と地山の自重載荷後の最大主 応力の比較を示す.この図から,地山の自重載荷によ って,覆工の右肩部に引張応力が作用していること がわかる.ここで,Ⅰ期線竣工から現在までの増加引 張応力と,覆工の許容増加引張応力を比較すること で,現在覆工に作用する応力が許容値内であるかを 判定した.許容増加引張応力は高速道路株式会社に よる以下の目安⁴⁾を用いた.

(許容增加引張応力) = $0.02\sigma_{ck}$

ここで、 σ_{ck} は覆工の設計基準強度であり、本研究では 18MPa を採用し、許容増加引張応力 0.36MPa として比較を行った.

図-5から, 左肩部では引張応力が減少, つまり圧 縮応力が大きくなっていることがわかる. それに対 して, 右肩部では許容増加引張応力(0.36MPa)以上の 増加引張応力が作用していることがわかる. このこ とから, 緩み圧の作用によって I 期線覆工右側の健 全性が低下していると考えられる. 以上のことから, I 期線の片側に生じる偏在ひび割れの発生要因は外 力によるものではないかと考えられる.

4. まとめ

本研究では既設めがねトンネルである A トンネル を対象に三次元数値解析を行い,覆工に生じる偏在 ひび割れの発生要因の推察を行った. II 期線施工時 の挙動再現からは, CP 直下の地山が脆弱化し, CP が 沈下しているのではないかと考察できた.また,土被 り荷重の載荷からは,増加引張応力値を用いて評価 すると,外力の作用が偏在ひび割れの発生要因の一 つではないかと考察できた.しかし,現時点でのひび

最大主応力の比較(10m)

割れの再現には至っておらず、今回仮定した土被り 荷重だけでなく、他の外力の作用を考慮した解析が 今後の課題として挙げられる.

また,今後の定期点検結果を用いた新たな解析の 実施も課題である.

参考文献

 1)北村彩絵,森本真吾,進士正人:ひび割れ指数 TCI を援用した既設トンネルのメンテナンス優先度箇所判 定,トンネル工学報告集,第27巻,I-1,2017.11
2)青木宏一:めがねトンネルの設計と施工結果の評価 に関する研究,pp.5-48,2001,2.

3)土木学会岩盤力学委員会:トンネルの変状メカニズ ム, pp.90-91, 2003, 9.

4)高速道路株式会社:設計要領第三集トンネル編トンネル本体工保全偏(近接施工), p25, 2006, 7.