クリンカアッシュの粒子特性に基づくせん断強度の評価

山口大学大学院	学生会員	○橘髙竜之佑	伊坂拓己
山口大学大学院	正会員	吉本憲正	兵動正幸
中国電力(株)	渡近	四健一 佃勝二	中本健二

1. はじめに

クリンカアッシュとは、石炭火力発電の際に生成さ れる石炭灰の塊を粉砕機により粉砕したものであり, 自然砂とは異なる複雑な粒子形状をしている.本研究 では、クリンカアッシュの粒子形状が影響を及ぼすと 考えられる、せん断強度特性について自然砂と比較し ながら検討し、さらにクリンカアッシュの粒子特性に 基づくせん断強度の評価を行うことを目的とする.

土粒子密度	最大密度	最小密度	平均粒径	真円度	単粒子破砕強度
$\rho_s ({\rm g/cm^3})$	$ ho$ $_{dmax}({\rm g/cm^3})$	$ ho$ $_{dmin}$ (g/cm ³)	d ₅₀ (mm)	R _c	$\sigma_{\it fm}({\sf MPa})$
2.072	1.019	0.754	0.58	2.73	2.18
2.151	0.948	0.813	0.21	2.55	1.70

表1. 物理的性質

	$ ho_s ({\rm g/cm^3})$	$\rho_{\rm dmax} ({\rm g/cm^3})$	$ ho_{dmin} ({\rm g/cm^3})$	d ₅₀ (mm)	R _c	σ_{fm} (MPa)
C.Mi	2.072	1.019	0.754	0.58	2.73	2.18
C.Da	2.151	0.948	0.813	0.21	2.55	1.70
C.He	2.173	1.102	0.830	1.20	3.04	2.18
C.Ta	2.132	1.014	0.857	0.22	3.39	0.91
C.Shi	2.151	1.140	0.888	0.70	2.63	4.44
C.Ma	2.110	1.085	0.870	1.67	2.55	2.27
部まさ土	2.583	1.971	1.587	1.40	1.84	33.10
曲、古石山	0.C0E	1.050	1 4 2 4	0.20	1.24	100 50

2. 試料及び試験方法

2-1. 用いた試料

試料は全国 6 か所の石炭火力発電所から採取されたクリンカ アッシュを用いた(以下 C.Mi, C.Da, C.He, C.Ta, C.Shi, C.Ma と表示する). クリンカアッシュおよび自然砂の物理的性質を表 1に示す.クリンカアッシュは粒子内部に空隙が存在するため, 比較的低い土粒子密度を示している.また,真円度は自然砂より 高く複雑な粒子形状をしているが、単粒子破砕強度は自然砂よ りも低い値を示している.図1にクリンカアッシュと自然砂の 粒径加積曲線を示す. クリンカアッシュはまさ土と類似した粒 度分布を示し、また、炭種によりばらつきがあることがわかる.

2-2. 供試体作製方法

密度は、初期締固め度 D_c=85,90の2種類とし、有効拘束圧 σ_{c} = 50, 100, 200kPaの3種類の下, 供試体高さ20cm, 直径10cm でそれぞれ試験を行った.供試体は、水浸試料を用いて水中落下 法で試料を投入し、モールドにハンマーで衝撃を与えて目標の 締固め度になるように供試体を作製した.

3. せん断特性

3-1. せん断強度特性

図 2 に, 有効拘束圧 σ_c'=50kPa における C.He と宇部まさ土の 応力比 η および体積ひずみ ϵ_v と軸ひずみ ϵ_a の関係を示す. どの 締固め度においても、宇部まさ土に比べてクリンカアッシュの ピーク時の応力比が高く、せん断強度が高いことがわかる.締固 め度が高いほどせん断強度に明確なピークが見られ、体積変化

も顕著な膨張傾向を示す、また、残留時の応力比は、密度の違いによる影響はあまり見られず、密度に依らず

キーワード クリンカアッシュ, せん断強度, 粒子特性

連絡先 〒755-8611 山口県宇部市常盤台 2-16-1 山口大学大学院創成科学研究科

TEL 0836-85-9300

一定の値に収束することがわかる.このような結果は、既往の研 究成果 2)と類似するものであり、クリンカアッシュも自然砂と同 様の特性を有するといえる.

3-2. せん断強度の評価

Vesic and Clough²⁾は、密度や拘束圧の影響を加味した上でピー ク時のせん断抵抗角 φpeak を算出できる式を提案している.本研究 において、排水条件での試験であることを考慮すると、式(1)のよ うに有効応力表記で表現できる.

$$\varphi_{peak} = \varphi_{res} + CD_c ln\left(\frac{p'_{cr}}{p'}\right) \tag{1}$$

ここで、 φ_{res} は残留時のせん断抵抗角、C は材料定数である. pcr'については、ピーク時と残留時の φ が等しくなる時の平均有 効主応力として定義する.図3に、 p_{cr} と単粒子破砕強度 σ_{fm} の関 係を示す、これら両者の関係には正の相関が認められる、次に、 式(1)を次式のように変形する.

$$\frac{\varphi_{peak} - \varphi_{res}}{D_c} = Cln\left(\frac{p'_{cr}}{p'}\right) \tag{2}$$

図4に($\varphi_{peak} - \varphi_{res}$)/ $D_c \ge p_{cr}$ '/p'の関係を示す.図に示すように, 試料ごとに概ね一本の直線を引くことができる.図4のように縦 軸に($\varphi_{peak} - \varphi_{res}$)/ D_c , 横軸に p_{cr} '/p'をとると, その傾きが材料定数 Cとなる.また,材料定数Cと真円度 R_c の関係を図5に示す.多 少誤差はあるが,材料定数 C は真円度 R_c を用いて評価できる. 残る未知数は gres であるが、先に述べたように残留時のせん断強 度は拘束圧に依らず一定の値をとるので、限界状態に至るまでの 三軸圧縮試験を一回行うだけで *qres* を求めることができる.図 6 に、拘束圧ごとのピーク時のせん断抵抗角 gpeakの実験値と予測値 を示す.実験値と予測値に多少の誤差は見られるものの,全体的 に見れば近い値を示し、 クリンカアッシュのピーク時のせん断抵 抗角 φ_{peak}は、式(1)を用いて予測できることがわかる.

4. まとめ

クリンカアッシュは、緩い状態でもまさ土より応力比が高く、 緩い状態でも高いせん断強度を有する.締固め度が高くなるに伴 いピーク応力比も高くなり、明確なピークが現れる.また、クリ ンカアッシュのピーク時のせん断抵抗角 gpeakの予測について,式 (1)を用い、粒子特性などの実験結果に基づき評価できることがわ かった.

参考文献

- 1) 若槻好孝, 吉本憲正, 穴井隆太郎, 吉永祐二, 吉岡一郎, 中下 明文: クリンカアッシュの粒子特性と緩詰め状態の強度・変 形特性, 土木学会文集 C Vol.65, No.4, pp.897-914, 2009.11
- 2) Vesic, A. and Clough, G.W. : Behavior of Granular Materials Under High Stress, Journal of the Soil Mechanics and Foundations Division, Vol.93, Issue 6, pp.117-141, 1967.

図4. $(\varphi_{peak} - \varphi_{res})/D_c \geq p_{cr}'/p'$ の関係

