人工リーフ開口部における波と流れの実験的研究

(株)荒谷建設コンサルタント 〇金子 剛史

鳥取大学 正会員 黒岩 正光

1. はじめに

人工リーフは,景観を損なわず消波効果が期待さ れる工法であり,高潮・侵食対策工法のひとつでも ある.人工リーフの消波メカニズムは,リーフ天端 にて入射波を強制的に砕波させることにより,エネ ルギー逸散を図ることによる.構造諸元の決定は, 所要の伝達率を得るため,入射波諸元と天端水深及 び天端幅の関係を用いて設計を行っている.しかし ながら,開口部に発生する離岸流の影響による著し い洗掘やブロックの移動・散乱による堤体の安定性 が損なわれる問題が生じており,開口部における離 岸流の特性については未だ不明な点が多い.そこで 本研究では,人工リーフ開口部の洗掘に影響を及ぼ す底層部での流れに着目し,水理模型実験によりそ の特性を明らかにすることを目的とする.

2. 実験概要

実験に用いた平面 2 次元水槽は,長さ 12m,幅 5m, 深さ 0.6m,斜面勾配 1/10 である.人工リーフの模型 は,鋼材で骨組みを作成しその中に砕石を詰めたも のを使用した.模型は,延長 125cm,天端幅 20cm, 40cm をそれぞれ 2 基ずつ用意し,開口部を 50cm とし て設置した.人工リーフ模型の概要を図-1 に示す.

波高の計測は、容量式波高計を3台用いた.計測 位置は、沖側の一様水深部で2点、勾配変化点で1 点、リーフ開口部で岸沖方向に10cm ピッチで9点と した.流速の計測は、水平2成分の電磁流速計を3 台用いた.測点は、人工リーフ開口部を沿岸方向に 10cm ピッチで3点、岸沖方向に10cm ピッチで8点、 鉛直方向に3点(水面から5cm,8cm,水底から1.5cm) とした.流速は、一定時間の通過波の流速を測定し、 時間平均した定常波を抽出した.データカウント数 は500、サンプリング周波数は20Hz とした.

図-1 人エリーフ模型の設置概要

3. 実験の条件

実験は、人工リーフ開口部に着目し行った.人工 リーフの天端水深は2cmとし、天端幅Bを20cm と40cm,波浪の周期Tを0.9s~1.2s,波形勾配H₀/L₀ を0.01~0.03に変化させ、それぞれの違いが人工リ ーフ開口部の流速や波高に及ぼす影響を明らかにす るために、計18ケースの模型実験を実施した.**表-1** は、リーフ緒元及び波浪の実験の条件一覧を示す. 砕波、非砕波の判定は実験中の目視及び伝達波の計 測結果により行った.なお、砕波、非砕波はリーフ 前面について判定した.

表-1 実験の条件

	B(cm)	T(s)	H(cm)	H0/L0	波高伝達率	砕波·非砕波
case1	20	0.9	1.14	0.010	0.54	非砕波
case2			2.18	0.019	0.48	非砕波
case3			3.40	0.029	0.59	非砕波
case4		1.05	1.58	0.010	0.38	非砕波
case5			3.48	0.022	0.53	非砕波
case6			4.52	0.029	0.35	砕波
case7		1.2	2.95	0.014	0.52	砕波
case8			3.70	0.018	0.48	砕波
case9			7.37	0.036	0.44	砕波
case10	40	0.9	1.08	0.009	0.47	非砕波
case11			2.31	0.020	0.43	非砕波
case12			3.54	0.030	0.27	砕波
case13		1.05	1.47	0.009	0.58	非砕波
case14			3.28	0.021	0.21	砕波
case15			4.66	0.030	0.22	砕波
case16		1.2	2.11	0.010	0.47	砕波
case17			3.65	0.018	0.24	砕波
case18			5.69	0.027	0.27	砕波

キーワード 人工リーフ 開口部 離岸流

連絡先 〒730-0835 広島市中区江波西1丁目25番5号 (株)荒谷建設コンサルタント tell 082-234-5660

4. 実験の結果

図-2は、実験の代表例(case1)として人工リーフ 開口部 X=120 における底層流速の時系列及び時間平 均した定常流速を示したものである.なお、流速の 向きは岸向きを正としている.図より、人工リーフ 開口部における定常流速は、沖側に向かっているこ とが確認できる.

図-2 流速測定結果の一例

図-3 は、沖向きの定常流速(底層)の最大値を抽出 し、波形勾配と天端幅、砕波・非砕波で整理した結 果を示したものである.図より、波形勾配が大きく なるにつれ、沖向きの定常流速は大きくなることが 確認できる.また、砕波条件では、開口部での流速 が増大していることがわかる.これは、砕波に伴う 水位上昇に起因していると考えている.

図-4 は、沖向きの定常流速の最大値を天端幅と波 高伝達率、砕波・非砕波で整理したものを示したも のである.天端幅 40cm の場合は、砕波・非砕波の条 件で比較すると、砕波によるエネルギー損失により 波高伝達率が小さいことが確認できる.一方、天端 幅 20cm の条件では、開口部における底層流速は大き く異なるものの、波高伝達率に大きな関係は見いだ せなかった.

図-5 は、天端幅 40cm とした場合について、沖向き の定常流速(底層及び表層)の最大値を抽出し、砕 波と非砕波で整理した結果を示したものである. 図 より、砕波条件下において表層と底層の流速の差が 大きく生じており、底層流速が大なる値となってい る. これは砕波による戻り流れが生じているためで あると考えられる.一方、非砕波条件では、水深方 向の流速に、明確な関係は確認できなかった.

図-3 天端幅と開口部底層流速

図−5 開口部表層及び底層の流速と砕波・非砕波

5. おわりに

本研究では平面2次元水槽を用いて模型実験を行 い,砕波による水位上昇によりリーフ開口部で急激 な離岸流が発生することが,水理模型実験より確認 された.今後は数値計算等により,平面的な流速分 布の推定を行うとともに,人工リーフ長・開口幅の 関係に着目した効果的な開口部の設置間隔や人工リ ーフ天端部における澪筋設置の有効性について検討 していきたい.

参考文献

安本善征・黒岩正光・松原雄平・間瀬肇・市村康, 人工リーフ開口部における流況に関する実験と準3 次元海浜流モデル適用性の検討,土木学会論文集 B2(海岸工学)70巻(2014)2号 pp. I_76-I_80