トンネル壁面画像展開図作成のための画像間結合精度の改善

山口大学大学院 学生会員 〇仁田尾 慎吾 山口大学大学院 正会員 河村 圭 三井住友建設株式会社 正会員 塩崎 正人

1. はじめに

トンネルの定期点検では、トンネル本体工の変状お よびトンネル付属物の異常箇所の記録とともに写真撮 影を行い、点検データを保存する必要がある.さらに、 道路トンネル定期点検要領において、5年に1回の頻度 で点検を実施することが基本とされ、点検業務の効率 化が課題となっている.これらを背景として、著者らは、 車載型撮影装置を利用したトンネル壁面点検支援シス テムを開発している.なお、本システムは、①撮影装置、 ②撮影画像結合ソフト、③ひび割れ抽出ソフトから構 成される.②は、トンネル壁面の連続画像からトンネル 壁面画像展開図を作成する.また、③は、撮影画像結合 ソフトで作成されたトンネル壁面画像展開図からひび 割れを抽出し、ひび割れ変状図の作成を行う.

本研究の目的は、トンネル壁面点検支援システムの 画像間結合精度の改善である.具体的には、著者らの 既存研究¹⁾における連結画像の作成では、連結画像の結 合精度が不十分であったため、本研究では、「照明ムラ の除去」、「ケーブル領域および撮影装置の反射光の除 去」の2手法を提案し、その有効性を検証した.

2. トンネル壁面画像展開図作成

2.1 トンネル壁面画像展開図作成の流れ

本節では, 図-1 に示される, トンネル壁面画像展開 図作成の流れを説明する.

Steplでは、図-2に示される、撮影装置を用いてトン ネル壁面の撮影を行う.本撮影では、車両に搭載された カメラ6台と照明3台がトンネル壁面に対して正対撮 影できるように設置されており、撮影装置全体の角度 を変えながらトンネル内を複数回往復して撮影を行う ことにより、トンネル壁面全体を撮影する.ここで、カ メラはSONY製HDR-CX630Vを使用し、プログレッシ ブ方式を採用している.なお、本撮影では、トンネル壁 面の断面形状の変化を想定しておらず、さらに、トンネ ル壁面にすすがないことを前提とする.Steplの成果物 は、各カメラの動画に対して撮影方式に合わせて作成 された、「キャプチャ画像」である.キャプチャ画像の

図-2 撮影装置

1 枚のサイズは、1920×1080pixel である. Step2 では、成 果物として、「キャプチャ画像」から各カメラのトンネ ル延長方向の「連結画像」を作成する. Step2 の処理は、 前後画像間の結合位置探索と画像移動量補正処理から 構成される. 前後画像間の結合位置探索の詳細は、2.3 節で解説する. 画像移動量補正処理では、前後画像間の 結合位置探索において発生した結合エラーを補正する. Step3 では、各カメラのトンネル延長方向の「連結画像」 をトンネル円周方向に結合させ、最終成果物として、 「トンネル壁面画像展開図」を作成する. 本研究は、図 -1 中の Step2(1)を対象としている.

2.2 撮影条件

本節では, 表-1 に示す,本研究の撮影条件について 説明する.本撮影は,片側1車線のトンネルで撮影を行 った.このため,本トンネルで撮影された各カメラの 「キャプチャ画像」の枚数は,カメラ1台につき1559 枚となり,画像間の結合位置探索を行う前後画像の組

数は、1558 組となった.

2.3 前後画像間の結合位置探索問題

本節では、各カメラにより撮影した「キャプチャ画像」 からトンネル延長方向の「連結画像」を作成するための 前後画像間の結合位置探索問題について記述する.

図-3 には、結合位置探索問題のイメージ図を示す. 結合位置探索問題とは、トンネル壁面を撮影した、連続 する 2 枚の画像を、重複する撮影領域が重なり合うよ うに、結合位置(*m*,*n*)を決定する問題である.

結合位置探索では、前画像の左下座標を(0,0)に固定 し、後画像の位置のみを移動させることによって、結合 位置を探索する. 図中の x 軸と y 軸は、それぞれトンネ ル延長方向とトンネル円周方向に対応する. また、図中 の原点(0,0)から座標(*m*,*n*)までの前画像に対する後画 像の移動量を、画像移動量(*m*,*n*)と定義する. ここで、 式(1)から式(3)には、結合位置(*m*,*n*)を探索する問題の 目的関数と制約条件を示す.

目的関数	$F(m,n) \rightarrow min$	(1)
制約条件	$0 \le m \le 800$	(2)
		(\mathbf{a})

$$-50 \le n \le 50 \tag{3}$$

F(m,n)は、図-3中の前後画像が重なった領域の相違度 指標であり、式(1)では、この値が最小となる結合位置 (m,n)を探索する.式(2)は、トンネル延長方向の画像移 動量mの制約条件であり、撮影車両の速度(0km/hから およそ 40km/h)に相当する範囲である.なお、式(2)の 範囲は、表-1の撮影車両の速度、撮影画像のフレーム レート、画素分解能から求められる.さらに、式(3)は、 撮影装置の上下振動(上下それぞれおよそ 10mm)を考 慮した、トンネル円周方向の画像移動量nの制約条件で ある.

3. 前後画像間の結合位置探索手法

3.1 本研究で使用する結合位置探索手法

表-2には、本研究で比較する結合位置探索手法をま とめる. 各手法の異なる点は、以下に解説する相違度指 標である.

3.2 相違度指標

本研究では,前後画像の相違度を測る指標として,相 違度*S(m,n)と*,*S(m,n)*の分布の曲率*κ(m,n)*を使用した. 探索手法Aでは,次式(4)を相違度指標とした.

$$S(m,n) = \frac{\sum_{i=m}^{M} \sum_{j=n}^{N} (I_1(i,j) - I_2(i,j))^2}{(N-n+1)(M-m+1)}$$
(4)

表-1 撮影条件

項目	数値
トンネル長	230(m)
撮影距離	3(m)
撮影車両の速度	およそ30(km/h)
撮影画像のフレームレート	60(fps)
画素分解能	0.23(mm/pixel)

表-2 結合位置探索手法の違い

	相違度指標	解探索法
探索手法A	S(m,n)	しらみつぶし探索法

 $\kappa(m,n)$

しらみつぶし探索法

探索手法B

探索手法Aでは、目的関数を $S(m,n) \rightarrow min$ とし、制約 条件を式(2)と式(3)とする.ここで、 $I_1(i,j)$ と $I_2(i,j)$ は、 それぞれ前画像 I_1 と後画像 I_2 の各画素(i,j)の画素値で ある.なお、結合位置探索では、RGB それぞれの画素 値に対して相違度計算を行い、その合計値で前後画像 間の重なり領域の相違度を評価する.S(m,n)の値は 0 以上の値を取り、S(m,n)の値が小さい、すなわち、相違 が小さいほど画像間の重なり領域が類似していること を示す.なお、式(4)の分子のみでは、探索位置により、 相違度計算の対象となる総画素数が異なる.このため、 既存研究では、式(4)の分子を重なり領域の面積(画素 数)で割ることにより、探索位置の違いによる相違度計 算の対象画素数の異なりの差を補正した. 探索手法 B では, 次式(5)を相違度指標とした.式(5) は, *S(m,n)*の分布の曲率である.

$$\kappa(m,n) = 4 \cdot S(m,n) - S_1 - S_2 - S_3 - S_4 \quad (5)$$

$$S_1 = S(m + \alpha, n) \tag{6}$$

$$S_2 = S(m - \alpha, n) \tag{7}$$

$$S_3 = S(m, n + \beta) \tag{8}$$

$$S_4 = S(m, n - \beta) \tag{9}$$

ここで、 S_1 、 S_2 、 S_3 、 S_4 は、式(4)より得られるS(m,n)の 値であり、 α と β はそれぞれ x 軸と y 軸方向への近傍幅 を示す. 探索手法 B では、目的関数を $\kappa(m,n) \rightarrow min$ と し、制約条件を式(2)と式(3)とする. 式(5)は、S(m,n)の 分布の曲率を表す指標であり、正または負の値が大き いほど、急激にS(m,n)の値が変化していることを示す. 探索手法 B では、S(m,n)の値を4 近傍点の相違度(S_1 から S_4)と比較し、最も急激にS(m,n)の値が凹方向に変 化している箇所、すなわち、 $\kappa(m,n)$ の値が負であり、最 も大きい値をとる箇所を結合位置とする.

3.3 解探索法

本研究では、「しらみつぶし探索法」を利用した.「し らみつぶし探索法」とは、式(2)と式(3)を満足する、解 探索範囲内のすべての探索点(m,n)を探索する手法で ある. なお、本研究では、式(2)と式(3)の制約条件のも と、探索処理時間の短縮を目的とし、mとnは、それぞ れ 12pixel刻み、2pixel刻みに結合位置の探索を行った. また、 $\kappa(m,n)$ の算出に用いる、近傍幅 α と β は、それぞ れ 12pixel刻み、2pixel刻みに相違度計算を行った.

4. 各結合位置探索手法の結合精度の検証

4.1 使用画像

本研究では,**表-1** に示すトンネルを対象として,検 証を行った.

4.2 結合精度の評価基準

本検証の結合精度は、式(10)により評価を行った. な お、探索結果として各手法から得られた画像移動量 (*m*,*n*)のトンネル延長方向画像移動量*m*が、500pixel

(25km/h) 以下または 700pixel (35km/h) 以上を結合 エラーと定義した.

結合精度(%) =
$$\left(1.0 - \frac{結合エラー数}{1558}\right) \times 100$$
 (10)

4.3 各探索手法の比較検証

表-3 および**表-4** 中の(a)には, 探索手法 A と探索手法 B の結合精度を示す. 探索手法 B では, 探索手法 A と

比較すると,結合精度が全てのカメラで向上した.また, 探索手法 B の全てのカメラの結果を見ると,カメラ v06 の結果が 64.8%となり,他のカメラと比べ,結合精度が 低かった.この要因として,カメラ v06 のキャプチャ画 像には,ケーブルが映っていることがあげられる.

4.4 結合精度低下に関わる要因

結合精度低下に関わる要因として、「照明ムラ」と「ト ンネル付属物」の2つが挙げられる.

「照明ムラ」とは、照明により発生する、キャプチャ 画像中の明るさ変化の決まったパターンのことである. 本来、探索手法AとBの結合位置探索では、コンクリ ート壁面の特徴をもとに、結合位置を決定する.しかし、 照明ムラが存在する場合、コンクリート壁面の特徴で はなく、照明ムラのパターンをもとに結合位置が決定 され、結合精度が低下する可能性がある.

「トンネル付属物」とは、ケーブルや標識といった、 トンネル壁面に存在する物体のことである.こちらも、 「照明ムラ」と同様に、コンクリート壁面の特徴ではな く、トンネル付属物の特徴をもとに結合位置が決定さ れ、結合精度が低下する可能性がある.

5. 提案手法

5.1 本提案手法における画像の扱い

本提案手法で扱われるキャプチャ画像は,カラー画 像のRGB それぞれの画素値から算出される輝度値を用 いて,カラー画像をグレー(輝度)画像に変換される.

5.2 照明ムラの除去

本手法の目的は,撮影装置の照明により,キャプチャ 画像中に,明るさ変化の決まったパターンで存在して いる照明ムラの除去を行うことである.本研究の照明 ムラの傾向は,著者が選択した,図-4(a)に示す1枚の サンプル画像から推定した.サンプル画像には,コンク リート壁面に,ひび割れや漏水,チョークの跡など,照 明ムラ以外の情報が入っていない画像を選択した.照 明ムラの推定画像は,サンプル画像にフィルタサイズ を201×201pixelのメディアンフィルタを適用すること で作成した.ここで,推定画像の各画素値をL(*i*,*j*),ま た,L(*i*,*j*)の最小値をL_{min}とする.次式では,照明ムラ の除去式を示す.

$$I'(i,j) = I(i,j) - L(i,j) + L_{min}$$
(11)

ここで, *I*[′](*i*,*j*)は照明ムラ除去後の画素値, *I*(*i*,*j*)は, 照明ムラ除去対象画像の画素値である.

表-3 探索手法 A における各手法の結合精度

カメラ	(a) Aのみ	(b) A+照明ムラ	(c)A+ケーブル除去
v01	59.1%	86.6%	54.8%
v02	67.7%	75.0%	68.4%
v03	63.0%	51.1%	65.2%
∨04	79.3%	62.6%	79.3%
∨05	76.7%	73.6%	75.0%
∨06	59.5%	68.1%	67.8%

カメラ	(a) Bのみ	(b) B+照明ムラ	(c)B+ケーブル除去
v01	96.0%	95.8%	97.8%
v02	95.3%	94.6%	95.8%
∨03	92.7%	92.1%	88.3%
∨04	93.6%	92.3%	95.5%
∨05	92.4%	92.6%	97.1%
v06	64.8%	65.4%	92.7%

表-4 探索手法 B における各手法の結合精度

(a) 照明ムラ (b) ケーブル 図-4 照明ムラおよびケーブルの存在する画像

5.3 ケーブル領域および撮影装置の反射光の除去

本手法の目的は、相違度計算の際に、図-4(b)の赤枠 に示すようなケーブルを、相違度計算範囲から除外 することである.ケーブルはコンクリート壁面より も黒く、ケーブル上の撮影装置の反射光はコンクリ ート壁面よりも白いことから、コンクリート表面と ケーブルまたケーブル上の反射光を分類するための、 閾値a,b(a < b)を設定し、aよりも輝度値が低く黒色 (輝度値:0)に近い箇所、または、bよりも輝度値が高 く白色(輝度値:255)に近い箇所を、相違度計算範囲 から除外した.なお、閾値は、著者がケーブルの黒領 域の輝度値と撮影装置の反射光の白領域の輝度値の 値を調べ、a=100、b=170と設定した.

5.4 提案手法の検証

a)照明ムラの除去の検証

表-3 および表-4 中の(b)には,照明ムラの除去を組み 込んだ,探索手法Aと探索手法Bの結合精度を示す. ここで,これらの表中の値は,表-3 または表-4 中の(a) と比較して,結合精度が高くなった箇所を赤色,低くな った箇所を青色とした.この結果から,探索手法Aで は結合精度が高くなったカメラが多かったが,探索手 法Bでは結合精度が低くなったカメラの方が多かった.

b) ケーブル領域, 撮影装置の反射光の除去の検証

表-3 および表-4 中の(c)には、ケーブル領域、撮影装置の反射光の除去を組み込んだ、探索手法 A と探索手法 B の結合精度を示す.ここで、これらの表中の値は、 照明ムラの除去と同様に、表-3 または表-4 中の(a)と比較して、結合精度が高くなった箇所を赤色、低くなった箇所を青色とした.表-4 中の(c)では、表-3 中の(c)の探索手法 A と比較すると、結合精度が全てのカメラで向上した.また、表-4 中の、カメラ v06 の(a)と(c)の結合精度を比較すると、ケーブル領域、撮影装置の反射光の除去を行うことで、結合精度が 27.9%向上したことが分かる.このことから、ケーブル領域および撮影装置の反射光の除去は有効であると言える.

6. おわりに

本研究では、「照明ムラの除去」と「ケーブル領域お よび撮影装置の反射光の除去」の2手法から結合精度 の改善を図り、その有効性の検証を行った.

表-3 と**表-4** 中の(b)の結果より, 探索手法 A では照 明ムラの除去の有効であるが, 探索手法 B では照明ム ラの除去が有効ではないことが示された.

表-3 と表-4 中の(c)の結果より,探索手法A,探索手法Bの2手法では,ケーブルが映っている画像が存在 するカメラ v06 において,結合精度が改善されている ことが確認できた.このため,ケーブル領域および撮影 装置の反射光の除去手法は有効であることが示された.

参考文献

 河村圭,吉崎晶俊, Cuong Nguyen KIM,塩崎正人, 中村秀明,"トンネル壁面画像展開図作成における画 像間の画素値差分布の勾配を利用した画像結合位置 探索手法に関する研究",土木学会論文集 F3,Vol.73, No.2, pp.I_188-I_200, 2018.3