A repeated web survey for inter-regional passenger transportation demand

1. Purpose

Net Passenger Transportation Survey¹⁾ (hereafter, NPTS) is conducted once at every five years to estimate inter-regional trip demand. However, there are several limitations²⁾ in NPTS, such as long time to publish the data, lack in seasonal demand change and no information in trip frequency of each record. In order to overcome above limitations, long-term continuous observation using web survey is proposed in our study.

This study models the number of trip frequency and the modal choice weighted by trip frequency, using data set from web survey. Our web survey conducted for every three months, repeated four times to cover a whole year.

2. Web survey

The respondents in the web survey were those who voluntarily applied as a monitor to Intage Co. Ltd, which is a marketing research company. The main item in this survey is the inter-regional trip records made in the latest three months, which recorded up to three different destinations with its frequency. Table 1 shows the outline of the survey. In NPTS, the amount of inter-regional passenger flow is estimated with expansion coefficient for a day for each sample. In this survey, a weight by trip frequency on each person is used instead of expansion coefficient. A weight is defined in eq. (1)

$$w_s = \frac{t_s/90_{(days)}}{\sum_s (t_s/90_{(days)})} \times N = \frac{t_s}{\sum_i t_s} \times N$$
(1)

Where, N is number of samples, w_s is weight for sample s, and t_s is trip frequency on sample.

$$f_{(X=y)} = \frac{\Gamma(y+r)}{y!\Gamma(r)} \left(\frac{r}{\mu+r}\right)^r \left(\frac{\mu}{\mu+r}\right)^y \tag{2}$$

Where, r is a parameter, y is a trip frequency, μ is $\exp(x\beta)$, x is an explanatory variable vector and β is a parameter vector.

Hiroshima Univ. Student Member OYushi Sugahara Hiroshima Univ. Regular Member Makoto Tsukai

	Table 1 The outline of the web survey	
--	---------------------------------------	--

Survey type	Panel survey					
	Spring : August 2015					
Target of season :	Summer : October 2015					
Survey month	Autumn : January 2016					
	Winter : April 2016					
Target of	Over 20 who live in Tokyo,					
respondents	Chiba, Saitama or Kanagawa					
The number	34.534 in all seasons					
of respondents	54,554 III all seasons					
Target of trip purpose	Business, sightseeing, private or others (excluding commuting and schooling)					
Items (individual attribute)	Gender, age, profession, income, family, hometown and so on					
Items (trip)	Frequency, departure area, visited area, all the modes used in trip and so on					

Table 2 Parameter range

Season	Spring		Summer		Autumn		Winter	
Category	Range	Rank	Range	Rank	Range	Rank	Range	Rank
Gender	0.196	4	0.229	3	0.226	5	0.240	3
Age segments	0.075	7	0.186	5	0.124	8	0.133	6
Profession	0.774	1	0.371	2	0.557	1	0.435	1
Income	0.157	6	0.195	4	0.307	2	0.392	2
Marry	0.073	8	0.105	7	0.165	7	0.065	8
Child	0.275	3	0.097	8	0.297	3	0.130	7
Family	0.174	5	0.138	6	0.278	4	0.228	4
Hometown	0.435	2	0.416	1	0.212	6	0.199	5

3. Trip frequency model

Trip frequency is modeled by negative binomial model defined in eq. (2). The result of trip frequency model is shown in table 3. The trip frequency seasonally changes on each individual attribute item. Table 2 shows the parameter ranges between the maximum item and minimum item in each category of individual attribute. The larger the range of individual category is, the stronger the individual attribute has influence on trip frequency.

Comparing in seasonal tendency, some of the ranks are quite similar in spring and autumn, except income and hometown which are swapped in these seasons.

 $\neq - \mathcal{D} - \mathcal{F}$ trip frequency, modal choice, weight

連絡先 〒739-8527 東広島市鏡山 1-4-1 広島大学大学院工学研究科 社会基盤環境工学専攻 事務室

TEL: 082-424-7819.7828

Table 3 The result of trip frequency model

Season	Spring		Summer	r	Autumr	1	Winter	r
item	Coefficie	nt	Coefficient		Coefficient		Coefficient	
Constant	0.297	***	0.197	***	-0.088		0.035	
Male	0.196	***	0.229	***	0.226	***	0.240	***
Female								
20-39	-0.075	***	-0.137	***	-0.124	***	-0.132	***
40-49								
50-59	-0.004		-0.034		-0.067	**	0.001	
Over 60	-0.031		-0.186	***	-0.092	**	-0.050	
Manager	0.183	***	0.253	***	0.357	***	0.214	***
Salaryman	0.090	***	0.118	***	0.193	***	0.143	***
Woreker								
Student	0.661	***	0.156		0.092		-0.069	
Part time	-0.113	**	-0.118	*	-0.086		-0.074	
Non-woreker	-0.089	**	-0.076	*	-0.028		-0.127	**
Other	0.049		0.010		0.471	***	-0.221	
Under 1 million	0.070		0.187		0.286	*	0.323	*
1-5 million	-0.050	*	-0.008		-0.021		-0.069	*
5-10 million								
Over10 million	0.107	***	0.029		0.182	***	0.130	***
No answer	0.027		0.016		0.032		0.140	***
Married	0.073	*	0.105	**	0.165	***	0.065	
Non-maried								
No child	0.053		0.013		0.004		0.085	
One								
Two	0.007		0.032		0.047		0.081	*
Over three	0.275	***	0.097	*	0.297	***	0.130	*
Single	0.088		0.082		0.219	***	0.070	
With partner	-0.087		-0.055		-0.059		-0.158	**
Familly								
With parents	-0.041		-0.037		0.126	*	-0.150	*
Other	-0.017		0.084		0.048		-0.038	
Gunma	0.426	***	0.416	***	0.212	•	0.196	
Saitama	0.010		0.047		0.075	*	-0.003	
Chiba								
Tokyo	-0.009		0.011		0.063	*	0.079	**
Kanagawa	0.067	**	0.057	*	0.081	*	0.118	***
r	4.354	***	3.153	***	2.841	***	2.612	***
-2 log L 4	4.196.E+04		4.027.E+04		3.703.E+04		3.585.E+04	1
R ² dev	0.077		0.067		0.089		0.070	
Samples	12499		12091		11280		10962	
		Signi	ficant level	· **	**' 0.1% '**	' 1%	·**' 5% '.'	10%

4. Modal choice model

This study models the modal choice between air and train defined in eq. (3). The parameters are estimated by maximum likelihood method. Log of likelihood function with sample weight is specified in eq. (4).

$$P_m = \frac{\exp(V_m)}{\sum_{j \in m} \exp(V_j)}$$
(3)

where, m is representative mode on the trip, P_m is probability to select mode m, and V_m is utility function of each mode

$$log(L) = \sum_{s} w_{s} \times log(P_{s}(i))$$
(4)

where, *s* is sample, w_s is a weight for s and $P_s(i)$ is the probability to choose mode *i* by *s*

Table 4 shows the result of three modal choice models, such as NPTS, weighted web data by frequency and unweighted web data. After weighting, significance level of parameters and likelihood ratio are improved. Therefore,

Table 4 The result of modal choice model

		NPTS		Weighted		Unweight	ted	
item		estimate		estimat	estimate		estimate	
Constant (railway use)	-1.886	**	-0.301	*	-0.949	**	
t	ime(/60min)	-0.200	**	-0.112	**	-0.156	**	
far	e(/1000yen)	-0.058	**	-0.032	**	-0.029	**	
	Male	-0.499	**	-0.659	**	-0.580	**	
	20 to 39	0.863	**	0.451	**	0.262	*	
Individual	50 to 59	0.147	**	0.348	**	0.229	*	
attribute	Over 60	0.000		-0.021		0.102		
	Manager	0.875	**	-0.273	*	-0.118		
	Salaryman	-0.273	**	-0.443	**	-0.034		
Trip	Business	0.527	**	0.542	**	0.424	**	
	Private	0.539	**	0.522	**	0.142		
attribute	Other	0.824	**	-0.096		0.645		
Likelihood ratio		0.585		0.343		0.323		
Fixed likelihood ratio		0.585		0.340		0.320		
Amount	Amount of train trip		1	4197		3595		
Amount of air trip		31699		1498		1447		
Time v	Time value (yen/h)		**	3499	**	5440	**	
Significant level : '***' 0.1% '**' 1% '*' 5% '.' 10%								

weighted model is better than unweighted model in model performance.

In table 4, amount of train / air trip are calculated multiply the number of trip and, expand coefficient in NPTS or weight in web survey. Comparing to NPTS, parameter in Manager is different in its sign, which requires further studies to be confined. On the other hands, most of other parameters become similar in NPTS and weighted.

5. Conclusion

The trip frequency model clarifies the difference in the contribution of individual attributes by seasons. The weighted modal choice model shows an improvement in the likelihood ratio compared the unweighted model.

In the future work, both trip frequency model and modal choice model has to be improved to introduce novel explanatory variables.

Reference

- 1) 国土交通省:全国幹線旅客純流動調查,2010
- 奥村 誠:全国幹線旅客純流動調査の意義と課題, 運輸と経済,第72巻,pp.21-30,2012