災害発生後のみの PALSAR-2 画像を用いた斜面崩壊発生域抽出の試み

山口大学大学	学院 理工学	学研究科	博士後期課程	学生会員	〇江口	毅
	山口大学	工学部	循環環境工学科	非会員	塩屋	篤
	山口大学	工学部	循環環境工学科	非会員	日高	真吾
山口大学大学院	理工学研究	名科 教授	受 フェ	ェロー会員	三浦	房紀

1. 序論

2014 年 5 月に打ち上げられた ALOS-2/PALSAR-2 の データが利用可能になったこともあり、災害発生時に おける SAR データの利用に期待が集まっており、現在 多くの研究が行われている^{1~2)}。その中で、筆者らは先 行の研究³⁾において、災害発生後できるだけ早期に被害 状況を把握することを目的として、災害発生後のみの SAR 画像から災害発生域、特に斜面崩壊発生域を抽出 する手法について検討を行っている。

本研究は、先行の研究の課題について取り組んだも のである。すなわち、PALSAR-2の①後方散乱係数を基 に対象地区を複数の領域に分類する分類画像を HH 偏 波以外についても作成し、斜面崩壊発生域の抽出を試 みる。②後方散乱係数の差を和で割って作成する正規 化画像について、4 偏波を用いた抽出を試みる。

災害発生後のみの SAR 画像を用いた災害発生域の抽 出手法は、災害発生前の画像を必要としないため、災 害発生後できるだけ早期に被害状況を把握する上で有 効な手法になると考えられる。

2. 解析手法

本研究では、平成26年8月広島豪雨において特に被 害が大きかった安佐南区の八木・緑井地区(図1)を 対象に斜面崩壊発生域の抽出を試みる。

図2は本研究で用いた、斜面崩壊の発生が懸念される箇所(以下、懸念箇所と呼ぶ)の抽出とその結果評価までの流れを示したフローチャートである。

まず、異なる条件で観測された衛星データの数値を 同じ基準に統一するため、DN(Digital Number)を後方 散乱係数[dB]に変換する⁴⁾。

次に、分類画像と正規化画像を作成する。分類画像

図 2 PALSAR-2 画像を用いた斜面崩壊発生域の抽出 と結果評価までの流れ

とは、後方散乱係数(閾値)を基に対象地区を、懸念 箇所を含む土壌域・都市域・植生域・水域に分類した 画像である³⁾。本研究では、各領域から教師データとし て値をサンプリングして、作成したヒストグラムの交 点(頻度が同じとなる値)を閾値とした。正規化画像 とは、式(1)に基づき2種類の偏波データの差をその和 で割って算出した画像である³⁾。

$$(A-B) \swarrow (A+B) \cdots (1)$$

キーワード PALSAR-2, 平成 26 年 8 月広島豪雨, 斜面崩壊

連絡先 〒755-8611 山口県宇部市常盤台 2-16-1 山口大学 大学情報機構 メディア基盤センター

TEL0836-85-9906

ここに、A,Bは任意の偏波データの後方散乱係数[dB] である。

次に、作成した各画像を用いて懸念箇所を目視により抽出して、最後に、抽出結果を国土地理院が公開している写真判読図⁵⁾と比較することで評価を行う。

3. 解析結果

本研究では4種類(HH,HV,VH,VV)の分類画像と、2 種類(2偏波と4偏波)の正規化画像、計6種類の画像 で懸念箇所の抽出を試みた。なお、紙面の都合上、こ こでは、VV偏波の分類画像と4偏波(HV+VH,HH+ VV)の正規化画像についてのみ抽出結果を示す。

図3にそれぞれの画像の抽出結果を示す。

図3 懸念箇所の抽出結果と光学画像

分類画像(a)では、黄色が懸念箇所を含む土壌域を示 している。ここでは、土壌域>都市域>植生域>水域 の順で大きい値を示した各領域を、閾値-3.0、-9.0、-16.0 により分類した。その結果、1~6の斜面崩壊発生域を 懸念箇所として概ね抽出することができた。しかし、7 ~9についてはうまく抽出できなかった。また、市街地 において土壌域の誤分類や山の西側(衛星から見ると 奥側)の斜面において水域の誤分類があり、斜面崩壊 発生域のみを抽出することはできなかった。これらの 誤分類は閾値のみによる分類では除去が困難であるた め、DEM (Digital Elevation Model)等を併用した分類手 法について今後検討を行う必要がある。なお、各偏波 の分類画像を比較した結果、HH 偏波と VV 偏波、HV 偏波と VH 偏波の画像の抽出結果が概ね同じとなった。 正規化画像(b)では、懸念箇所が白黒色の筋として表 れた。また、2 偏波を用いた場合と4 偏波を用いた場合 の画像を比較した結果、4 偏波を用いた正規化画像の方 が、懸念箇所と周辺の植生域とのコントラストが鮮明 であり、目視による抽出がより容易であった。しかし、 分類画像の結果と同様に、斜面崩壊発生域のみを抽出 することはできなかった。そのため、各偏波の特徴を より詳細に把握し、画像作成の式を、斜面崩壊発生域 のみを抽出できるように高度化する必要がある。

4. 結論

本研究では、4種類の分類画像と2種類の正規化画像 それぞれで懸念箇所の抽出を試みた。

その結果、分類画像では、閾値を-3.0、-9.0、-16.0 と することで概ね懸念箇所を抽出でき、土壌域・都市域・ 植生域・水域を大局的に分類することができた。また、 HH 偏波と VV 偏波、HV 偏波と VH 偏波の分類画像は 結果が類似することがわかった。

正規化画像(HV+VH, HH+VV)では、懸念箇所を 白黒色の筋として抽出でき、2 偏波より 4 偏波の正規化 画像の方がより容易に抽出できることがわかった。

しかし、両画像とも斜面崩壊発生域のみを抽出する ことはできなかった。そのため、今後の研究において DEM 等を用いた手法や画像作成の式の高度化について 検討を行う予定である。

参考文献

- 21) 翠川三郎、三浦弘之:高分解能 SAR 画像による 2008
 年岩手・宮城内陸地震での斜面災害地域の抽出、日本地震工学会論文集、第10巻、第3号、2010.
- 2) 鵜殿俊昭、吉川和男、野田敦夫、水野正樹、林真一 郎、佐藤匠、岡本敦:高分解能 SAR 画像を用いた 河道閉塞箇所抽出手法の検討、砂防学会研究発表会 概要集、pp.188-189, 2012.
- 江口毅、三浦房紀: ALOS-2/PALSAR-2 を用いた平 成26年8月広島豪雨による土砂災害域抽出の試み、
 第67回 平成27年度 土木学会中国支部研究発表会、 IV-21.
- 4) ALOS-2・ALOS ホームページ: http://www. eorc.jaxa.jp/ALOS-2/calval/calval_jindex.htm.
- 5) 国土地理院:平成26年8月豪雨 8月28・30・31 日撮影垂直写真による写真判読図.