広島大学大学院 学生会員 〇横田 龍一 広島大学大学院 フェロー会員 藤井 堅 コニシ(株) 正会員 堀井 久一 新日鉄住金マテリアルズ(株) 正会員 秀熊 佑哉

### 1. 背景・目的

現在,我が国では高度経済成長期に整備された社会 インフラの老朽化が社会的問題となっている.鋼橋で は疲労の他に腐食が代表的な損傷の事例であり,腐食 した鋼材の補修・補強は鋼板をボルトや溶接で添接し て行われることが多い.しかし,近年接着剤を用いて CFRP や鋼板を接着する強度回復法が研究されており, すでに CFRP 接着による性能回復法は実構造物に対し て採用されるようになった.

接着補修を施す場合は、母材が腐食していない部位 を含む腐食部全体に添接板を設置し、母材の全強を保 障するような補修が原則とされている.しかし、フラ ンジ全体が腐食している沿岸の橋梁など、健全部を含 めた範囲への添接板の設置が困難なケースでは、軽微 な腐食部はそのままに、腐食が特に著しい箇所を部分 的に補修することにより設計荷重を保証する補修法も 考えられる.本研究では、強度上危険な箇所を部分的 に補修した場合の補修区間の強度回復効果について検 討する.

#### 2. 試験概要

本研究では、腐食表面生成モデル <sup>1</sup>に基づき両面に 疑似腐食を施した供試体に接着補修を施し静的引張試 験を行う.同モデルは表面の減肉を疑似的に表現する モデルであり、同じ腐食面を持つ供試体を多数作製す ることで、表面の凹凸を考慮しつつ、補修・補強による 強度回復効果を定量的に評価する.本研究では、5種 類の補修長さの鋼板接着供試体および CFRP 接着供試 体を作製して試験を行い、補修長さが強度回復効果に 及ぼす影響を明らかにする.

本研究で作製した疑似腐食表面の減肉量を Fig. 1, 供試体母材の概形を Fig. 2,疑似腐食区間の断面平均 板厚分布を Fig. 3 に示す.疑似腐食区間左端から 219mmの断面平均板厚が 8.78mm(減肉量 2.72mm) で最小となるため,この断面を中心に添接板を接着す る.母材および添接板,接着剤の材料特性を Table 1 に 示す. CFRP 添接板は、シートを片面あたり4枚積層 して含浸接着させることで設計強度を受け持たせてい る. なお、CFRP 接着工法では、接着端部の応力集中 を避けるため接着端部に25mmのずらし長さを施すが、 接着長さが50mm および100mmの供試体では長さの 制約によりずらし長さを設けていない.



| E258   | FP-E9   | FB-E9S  | FR-E9P    |
|--------|---------|---------|-----------|
| (鋼板接着) | (プライマー) | (不陸修正材) | (含深接着樹脂材) |
| 27.5   | 18.2    | 16.7    | 15.4      |

# 3. 試験結果

Fig. 4 に鋼板接着供試体の荷重 - ひずみ曲線を示す. ここでいうひずみは、全体伸びを供試体のチャック間 の長さである有効長さで除した値である.いずれの供

キーワード 腐食損傷,鋼板接着補修,CFRP 接着補修

連絡先 〒739-8527 東広島市鏡山 1-4-1 広島大学大学院工学研究科 社会基盤環境工学専攻

TEL: 082-424-7819

試体も弾性域での挙動はほぼ同様であるが,塑性域に 入ると荷重の減少が見られる.これは,添接板の剥離 が進展し強度回復効果が失われるためである.その後 の挙動はいずれの供試体もほぼ同様であり,荷重が 400kN前後に達すると破断している.腐食区間補修長 さ450mmの供試体は腐食区間全体のみならず健全部 にも鋼板を接着した供試体であり,ひずみが2.7%程度 に達してから剥離している.また,接着長さ50mmの 供試体は早期に剥離が進展しているが,その他の供試 体はひずみが1.6%程度に達するまで剥離していない.

Fig. 5 に CFRP 接着供試体の荷重 - ひずみ曲線の部 分図を示す. ずらし長さを設けていない 50mm, 100mm 接着供試体は強度回復効果が小さいことが分 かる.また,鋼板接着供試体と比較すると早い段階で 剥離が進展している.これは CFRP の弾性係数が母材 と大きく異なることでひずみ差が生じ,塑性域に入る と脆性的に剥離するためと考えられる.ひずみ差によ り生じるせん断力を軽減するために高伸度性パテ材が 用いられることもあるが,本研究では用いていない.

各供試体の添接板の耐荷力を Fig. 6 に示す. 接着長 さが大きくなると耐荷力が増す傾向が見て取れる. 腐 食区間全体を覆った 450mm 補修供試体は健全な状態 の降伏応力にまで耐荷力が増加し,全強が保障されて いることがわかる. 一方で,補修長さが 200mm 程度 でも耐荷力の値は健全な状態に近い.

Fig. 7,8 に、腐食区間の一部が塑性域に入る荷重 300kN時の、ひずみゲージで測定した母材のひずみの 分布を示す.補修長さが大きくなるとひずみが小さく なる傾向にある.しかし、最小断面積位置である 219mm 箇所に着目すると補修長さが鋼板接着供試体 においては 100mm、CFRP 接着供試体については 200mm に達するとほぼ同等の値となっている.青木 ら<sup>20</sup>は、接着端部では母材に応力の集中が生じるもの の、接着端部からある程度の長さを確保すれば応力の 集中がほぼ見られなくなるとしている.Fig. 6 と併せ 考えると、本研究の条件では接着長さを 200mm 程度 確保すれば十分な部分的強度回復効果が得られると考 えられる.

## 4. まとめ

- 腐食区間全体に添接板を接着すると,強度は健全 な状態にまで回復したが,部分的な補修でも健全 な状態に近い値にまで強度の回復が見られた.
- 耐荷力は CFRP 接着供試体より鋼板接着供試体のほうが大きかった。一方で剥離発生時のひずみ

は CFRP 接着供試体のほうが小さくなった.



Fig. 4 鋼板接着供試体の荷重 - ひずみ曲線



Fig.5 CFRP 接着供試体の荷重 - ひずみ曲線





Fig. 7 鋼板接着供試体母材のひずみ分布 (300kN)



Fig. 8 CFRP 接着供試体母材のひずみ分布 (300kN)

#### 5. 参考文献

- 藤井堅ら:経年変化を考慮した腐食表面生成モデル,構造工学論文集,vol.50A, pp.657-665, 2004.
- 青木康素ら:片面当て板接着補修された断面欠損 を有する鋼部材の曲げ応力性状,構造工学論文集, Vol.59A, pp.647-656, 2013.