鳥取大学	学生会員	○杉本和俊
鳥取大学	正会員	谷口朋代
鳥取大学	正会員	小野祐輔

1. はじめに

地震時における剛体の挙動において飛び石と呼ばれ る現象がある。地震後に石を引きずった跡もないこと から、石が飛んで移動したと考えられているが、地震 中に石が飛んでいるのを目撃した例はないが、石の水 平移動量を計測した報告がある1)。そこで本研究では矩 形剛体を用いて剛体の飛び上がりから着地後の滑動を 伴いながらロッキング運動する現象が飛び石現象の支 配的な要因であると仮定した。着地後も水平変位を生 じるのではないかと考えられる。ロッキングする剛体 の衝突後の飛上り挙動は西ら 2)によって研究されてお り、その挙動は剛体の衝突直前、直後の速度は鉛直方 向と角速度方向の反発係数を用いて表されている。本 研究では、西の成果に基づき正弦波を受ける剛体が衝 突によって飛び上がった後に着地する際、着地点での 滑動の有無を判別し、着地点で滑動が生じる場合に剛 体がロッキングしながら滑動して剛体が静止するまで の挙動の時刻歴を求めた。ここでは、ある縦横比を有 する矩形剛体の寸法をいくつか設定して、剛体の寸法 が飛び上がりや水平移動量に及ぼす影響を調べた。

2. 剛体のロッキング運動の運動方程式

図 2 に示す回転方向 θ_r 、滑動方向sの運動方程式はラ グラジアンの運動方程式により次式で表される。 $m\ddot{s} - mR\ddot{\theta}_r \sin(\alpha + \theta_r) - mR\dot{\theta}_r^2 \cos(\alpha + \theta_r)$

 $=-m\ddot{z}-\mu'N$ (1)

 $I_0 \ddot{\theta_r} - mR\ddot{s}\sin(\alpha + \theta_r) + mRg\cos(\alpha + \theta_r)$

 $= mR\ddot{z}\sin(\alpha + \theta_r)$ (2)

ここで、*m*は剛体の質量、*R*は動径である。また、*x、y*方向の運動方程式より、静止摩擦力*f*と垂直抗力*N*は次式で表される。

 $f = -m\ddot{z} - m\ddot{s} + mR\ddot{\theta_r}\sin(\alpha + \theta_r) + mR\dot{\theta_r}\cos(\alpha + \theta_r)$ (3) $N = mR\ddot{\theta_r}\cos(\alpha + \theta_r) - mR\dot{\theta_r}^2\sin(\alpha + \theta_r) + mg$ (4)

図2着地点Lで滑動すると仮定した場合

3. 解析結果

入力加速度を *z* = *A*sin(*ωt*)とし、加速度振幅 *A* = 2.5G(m/s²)、周期*T* = 1.0(s)、剛体の縦横比 H/B = 0.5を一定にして、剛体の寸法を変化させた場合の剛体 の挙動を調べた。表1に各剛体の寸法と全体の水平方 向の移動量のうち各運動が占める割合を示す。①:飛 翔中の水平移動量(m)、②:ロッキングを伴う滑動によ る移動量(m)、③:水平方向の総移動量(m)とし、各剛 体寸法の各運動によって発生する水平移動量が全体の 水平移動量に占める割合を求めた。また、図4に飛び 上がり後の剛体の移動量の時間変化を示す。

キーワード ロッキング、飛び石現象、滑動、水平移動量 連絡先 〒680-8550 鳥取県鳥取市湖山町南4丁目101番地 TEL 0857-31-5288

表1 各剛体の寸法と各運動における

剛 体	高さ 2H (m)	幅 2B (m)	① (m)	② (m)	③ (m)	①/③ × 100 (%)	②/③ × 100 (%)
а	0.05	0.1					
b	0.1	0.2	0.09	0.93	1.02	8.7	91.3
с	0.2	0.4	0.03	0.76	0.80	4.0	96.0
d	0.3	0.6	0.03	0.65	0.67	3.6	96.4
е	0.4	0.8	0.02	0.59	0.61	3.5	96.5

水平方向の移動量の割合

図4 飛び上がり後の水平移動量

表 1 より寸法に限らず運動全体で生じた水平方向の 移動量の 9 割以上が滑動を伴うロッキング運動をして いるときに発生していることが確認できる。ただし、 剛体 a は転倒した。これは、式(5)よりロッキング中の 角加速度*ö*が動径*R*に反比例することに起因する。

 $\ddot{\theta} = \frac{3}{4R} \{ \ddot{z} \cos(\alpha - \theta) - g \sin(\alpha - \theta) \}$ (5) 図 4 は飛び上がり後から運動停止までのx座標軌跡であ る。剛体 b の移動量が剛体 c、d、e と比較して大きい 理由は図 3 においてロッキング時の最大角度が約 25° で衝突の際に水平方向の速度が大きくなっていること が考えられる。さらに式(4)より着地後の運動において、 式(4)に示す垂直抗力Nの第1項 $mR\ddot{\theta}_r\cos(\alpha + \theta_r)$ の角加 速度 $\ddot{\theta}_r$ が負の値をとり垂直抗力Nを減少させる。そして 運動を停止させようとする動摩擦力f'が減少し、水平方 向の移動量が増大したと考えられる。また角加速度も 寸法が小さいほど大きくなることが確認できる。

4. 結論

本研究では水平方向の正弦波を受ける剛体が浮き上 がり、剛床版と衝突した後に飛び上がり、再び剛体が 剛床版に着地し、滑動しながらロッキングし、剛体が 静止するという仮定のもとで剛体の移動量を推定する ことを試みた。入力加速度 *z* = *A* sin(*ωt*)の諸元の内、加 速度振幅*A* = 2.5G(m/s²)、周期*T* = 1.0(s)、剛体の縦横 比 H/B = 0.5 を定め剛体の寸法を変化させると、水平移 動総量のうち滑動を伴うロッキング運動時に発生する 移動量が支配的であることが分かった。剛体の飛び上 がり運動は全体の運動の中で非常に短いため、飛翔中 の移動量は水平総移動量の 1 割に満たないことがわか った。一方、滑動を伴うロッキング時に発生する水平 移動量は 9 割以上であることが分かった。

5. 参考文献

 1)芝浦工業大学(紺野、諏訪、田辺)・工学院大学(久田、鱒沢、紫山、塚本、佐藤、松井、市居、小澤、吉田)・明星大学(年縄、矢島)・大成建設(吉村、堀井): 新潟県中越地震の被災地における微動記録と強震動記録について(報告)、2004、16/16 写真 B3

2) 西公平: ロッキングする剛体の衝突中の力学的エネ ルギーの収支に基づく衝突後挙動の実験的検証、2014、 p2-10、鳥取大学大学院工学研究科博士前期課程社会基 盤専攻土木工学コース修士論文

3) Tomoyo Taniguchi : Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion, Earthquake Engng Struct. Dyn., Vol.31, pp1481-1500, 2002, pp1487-1489