広島大学大学院工学研究科	学生会員	\bigcirc	小塚健祐
広島大学大学院工学研究院	正会員		半井 健一郎
広島大学大学院工学研究院	正会員		小川 由布子
広島大学大学院工学研究院	フェロー会員		河合 研至

1. はじめに

低レベル放射性廃棄物の余裕深度処分では、低拡散 層としてセメント系材料および緩衝材としてベントナ イト系材料の使用が検討されている。しかし、数万年 という超長期の処分期間には、地下水との接触により、 セメント系材料は溶脱による性能の低下を生じ、さら にはセメント系材料からのカルシウムなどの溶脱成分 の作用によってベントナイト系材料は変質しえる。超 長期の安定性を確保するためには、これら境界部にお ける変質の把握およびその低減が求められている。

これまでに、事前にベントナイトへ炭酸塩を混合す ることにより、セメント系材料から溶脱したカルシウ ムイオンとの反応によって境界部に炭酸カルシウム (CaCO₃)を生成させ、両材料の変質を抑制できるこ とが確認された¹⁾。ここで、炭酸ナトリウム(Na₂CO₃) をベントナイト質量の4%混合した場合には、1%混合 した場合と比べると多量のCaCO₃が生成することが 確認され¹⁾、バリア機能の向上も期待される。しかし、 現段階ではCaCO₃の生成が境界部での物質移動に与 える影響などに関しては十分に明らかにはなっていな い。

そこで本研究では、Na₂CO₃を混合したベントナイト と接触したセメントペースト表面に生成する CaCO₃ による閉塞効果に着目し、これらの境界部での反応が セメントペースト中のイオンの移動に与える影響につ いて分析することとした。

2. 実験概要

実験は、既往の電位勾配を与えない濃度拡散場にお ける浸漬試験¹⁾と同じ条件を採用した。

試料として、ベントナイトにはクニゲルV1を用い、 含水比は21%とした。Na₂CO₃をベントナイトの乾燥質 量に対して、1%または4%混合した。比較のため、 Na₂CO₃を混合しない無混合供試体も作製した。乾燥密 度は変質を評価しやすいように1.2g/cm³と小さくした。 セメントペーストは、普通ポルトランドセメントを用 い、水セメント比を60%とした。直径50mm、高さ 100mmの型枠に打ち込み、材齢1日で脱枠し、40℃の 温水中で28日間の水中養生を行った後、直径50mm、 厚さ10mmに切断した。図-1に示すように、アクリル

図-1 複合供試体概要

写真-1 浸漬試験の様子

板に空けた直径 30mm、厚さ 5mm の円形の穴に締め固 めたベントナイトおよび切断加工したセメントペース トからなる複合供試体を作製し、500ml の純水に 4 ヵ 月浸漬させた。浸漬開始前に真空飽水処理を行い、中 央の圧縮ベントナイトまで飽水したことを下面から目 視で確認した。浸漬試験の様子を写真-1 に示す。

表-1 EPMAの分析条件

加速電圧	照射電流	プローブ径	単位測定時間	定量用標準試料
15kV 1×10 ⁻⁷ A	1×10^{-7} A	40.um	40maaa	Wollastonite(CaSiO ₃) [SiO ₂ :50.94%, CaO:48.00%]
	40µm	40111860	NaCl	

純水への4ヵ月間の浸漬後、セメントペースト供試体を取り出し、ベントナイトと接触していた面以外を アクリロイル変性アクリル樹脂系ライニング材によっ てコーティングした。続いて、コーティングを行った セメントペースト供試体を濃度 3%の NaCl 水溶液 3000ml に 2 日間浸漬させた。ここで、塩化物イオン が浸漬面から深さ 10mmの他端まで浸透しないように、 既往の研究結果²⁾³⁾を参考に、浸漬期間を2日間と設定 した。

NaCl 水溶液への浸漬終了後、後述に通りに供試体を 切断し、EPMA 分析によりベントナイト接触面から深 さ方向の元素分布を測定した。

3. 分析方法

NaCl 水溶液への浸漬を終了した後、電子線マイクロ アナライザー(EPMA)により、浸漬曝露面から深さ 方向の元素分布が測定できる様、オイルカッターで幅 50mm×深さ10mm×厚さ5mmの板状試料に切断加工し た。その後、油をふき取り、24時間真空脱気を行った。 試料から脱ガスを起こす可能性があったため、分析面 の研磨に加え、試料の包埋処理を行った。本供試体は、 Cl の測定を行うためCl を含まないシアノボンドを包 埋剤として使用した。表面研磨には目的元素を含有し ないものを用い、潤滑剤にはケロシンを使用した。研 磨終了後、2-プロパノールで30分間超音波洗浄を行 い、ケロシンを洗浄した後、24時間真空脱気を行った。 その後、炭素蒸着を施した。

この様にして得た板状試料に対して、EPMA による 面分析を行った。EPMA の分析条件は表-1 に示すとお りで、ここでの対象元素を Ca、Si および Cl とした。 測定では X 線強度が得られるが、比例法により、各質 量濃度に変換した。ここで、単位体積あたり元素が 100%含まれているときの質量を m_{std} 、分析試料中のそ の元素の質量を m_{unk} とすると、質量濃度は m_{unk}/m_{std} で 定義される⁴⁾。また、定量用試料には、Ca および Si には Wollastonite、Cl には NaCl を用いた。

4. 実験結果と考察

Na₂CO₃無混合、1%および4%混合ベントナイトと 接触させたセメントペースト供試体の断面において行

図-2 Caの質量濃度分布

図-3 Siの質量濃度分布

図-4 Clの質量濃度分布

った、EPMA 分析より得た Ca、Si および Cl の質量濃 度分布を図-2 から図-4 に示した。図のとおり、Ca お よび Si の分布は供試体による違いはほとんど見られ ず、Cl の分布は浸漬面付近で 4%混合のみ顕著に小さ くなった。

次に、図-2 および図-4 の結果をより詳細に分析する ため、セメントペーストの Ca/Si および Cl/Si のモル比 について、ベントナイト接触面から内部への分布をそ れぞれ図-5 および図-6 に示した。端部の影響を排除す るため、幅 20mm、深さ 10mm の面分析を実施し、幅 方向に平均化した値を示している。

まず、いずれの供試体でも 0.3~0.4mm 程度の深さま で低下がみられた。図-2 では違いが明確ではなかった が、図-5 の Ca/Si モル比の低下領域の分布を見ると、 低下の程度は無混合が最も顕著で、4%、1%の順で緩 やかになった。これまでの研究¹⁾と比較すると、定性 的な傾向はおおよそ一致したものの、無混合では溶脱 深さが半減した。しかし、この原因は明らかではなく、 今後、再試験を行う予定である。

一方、図-6に示すとおり、Cl/Siのモル比について は、無混合供試体および 1%混合供試体ではほぼ同様 の分布を示したが、4%混合供試体では大幅に低下し、 接触面近傍では無混合供試体および 1%混合供試体と 比べ、約6分の1となった。また、供試体内に浸透し た塩化物量は約10分の1となった。すなわち、Na₂CO₃ を4%混合したベントナイトとの接触によって、イオ ンの拡散性が大幅に低下した。しかし、1%混合供試体 のイオンの拡散性の低下は確認されなかった。これら は、CaCO₃の生成量と関係し、閉塞効果を得るには十 分なNa₂CO₃の混合が必要であることを示唆している。

4. まとめ

人工バリアにおけるベントナイトとセメント境界 部における変質は、ベントナイトへ事前に炭酸ナトリ ウムを混合することで抑制される。セメントペースト への塩化物イオンの浸透抑制は、ベントナイトへの炭 酸ナトリウム混合率が1%のときより4%のときの方が 大きかった。なお、これらの抑制と境界部における炭 酸カルシウムの生成量との関係については、今後、さ らなる検討が必要と考えられる。

【参考文献】

- 半井健一郎、坂本浩幸、柴田真仁:炭酸ナトリウム混合によるベントナイトーセメント境界部の 変質抑制、土木学会年次学術講演会講演概要集、 Vol.66、CS3-050 (2011)
- 吉瀬健二、桝田佳寛、吉澤芳郎、小船真弓:セメント硬化体への塩化物イオン浸透メカニズムに

関する基礎的研究、コンクリート工学年次論文集、 Vol.22、No.1、pp.127-132 (2000)

- 竹田祐二、桝田佳寛、中村成春、吉瀬健二:セメントペーストの塩化物イオン浸透メカニズムに関する実験、コンクリート工学年次論文集、Vol.23、No.2、pp.505-510(2001)
- 4) 硬化コンクリートのミクロの世界を拓く新しい 土木学会規準の制定—EPMA法による面分析と微 量成分溶出試験方法について—、コンクリート技 術シリーズ 69、土木学会、 pp.55-81 (2006)