細骨材および含水状態の異なるモルタルにおける セシウムの浸透挙動

広島大学大学院 学生会員 〇伊藤 将志 広島大学大学院 正会員 半井健一郎 広島大学大学院 学生会員 林 明彦 広島大学大学院 フェロー会員 河合 研至

1. はじめに

2011 年 3 月 11 日の東日本大震災による福島第一 原子力発電所の事故により,大量の放射性物質が広 範囲にわたり拡散した.セシウム 137 の半減期は約 30 年であり,長期間影響が残るためできるだけ早く, 適切に除染することが求められる.

また,除染で取り除いた土や放射性物質に汚染さ れた災害廃棄物の処理も問題になっており,放射性 物質が飛散,もしくは地下水が汚染されないよう, 汚染された災害廃棄物を処理,処分しなければなら ない.

以上の放射性物質の除染,処理および処分のため には、コンクリート中の放射性セシウムの挙動を把 握する必要がある.そこで、本研究では安定同位体 であるセシウム 133 を用いて、コンクリート材料に おけるセシウムの吸着性、浸透性などの基本的な特 性を把握することを目的とする.

2. 吸着試験

2.1 試験概要

試料として, W/C=0.40の硬化セメントペースト, 未洗浄石灰砕砂,洗浄済石灰砕砂のそれぞれを粒径 75μm以下に微粉砕したもの,硅砂,ゼオライト(プ ロトン交換合成モルデナイト)の5 種類,さらにセ メントペースト粉末試料と各細骨材を1:1 で混合し た4 種類,合計9 種類を用いた.

試験方法は, 試料 1g を純水 20 ml に 10 時間攪 拌させ pH を安定させた後, 5000 mg/L, 10000 mg/L, 15000 mg/L の塩化セシウム水溶液をそれぞれ 1 ml 添加した. その後, 6 時間攪拌してから,吸引ろ過 を行い,原子吸光光度計により液相のセシウム濃度 の測定を行った. 細骨材のみの場合は冒頭の 10 時

図1 吸着試験結果

間攪拌を行わず,塩化セシウム添加以降の操作を行った.

各試料の吸着しやすさを表す指標として以下の分 配比 Rd¹⁾を用いた.分配比 R_dの定義を以下に示す.

$$R_d = \frac{V}{M} \times \frac{C_0 - C}{C} \quad [ml/g]$$

ここで、液相体積を V [ml]、固相質量を M [g]、液 相の初期濃度を C_0 [mol/L]、液相の平衡濃度を C [mol/L]とすると、分配比 R_d は固相濃度と液相濃度 の比を表している.よって、分配比が大きいという ことは、セシウムが固相へ吸着しやすいといえる.

2.2 試験結果·考察

吸着試験結果を図1に示す.図1より,各細骨材 の分配比は約2~4ml/g,セメントペースト粉末の分 配比は約1ml/gとなった.また,ゼオライトの分配 比は 1×10^{5} ml/gとなり,セメントペーストや各細骨 材と比較しても非常に高い結果となった.

以上よりモルタル中に一般に存在する各材料に対 してセシウムは吸着しにくいといえる.また,セメ ントへの吸着性は低いことから,コンクリート構造 物へのセシウムの吸着は使用する細骨材に影響する と考えられる.

3. 浸透試験

3.1 試験概要

供試体は、セメントとして普通ポルトランドセメ ント、細骨材として未洗浄石灰砕砂と洗浄済石灰砕 砂を用いた普通モルタル、さらにゼオライトを細骨 材の5%容積置換したゼオライト混合モルタルとし, 水セメント比は 0.60 とした. このモルタルを 40×40 ×160 mm の型枠に打込み, 24 時間後に脱枠した後, 湿気箱式養生で材齢 28 日まで養生した.養生終了 後,一部の供試体を温度 20 ℃,湿度 60 %の恒温恒 湿室で乾燥させ,残りの供試体を飽水処理し,含水 状態の異なる2 種類の供試体を作製した.供試体を 5 面コーティングして、表1に示す各浸せき条件で 1 mol/L の塩化セシウム水溶液または純水に浸せき した.所定の浸せき条件後,浸せき面から約2mm ご とにオイルカッターで切断し、 微粉砕して得られた 試料より, セシウム全量および可溶性セシウム量の 分布を測定した. なお, 測定は「硬化コンクリート 中に含まれる塩化物イオンの試験方法」(JISA 1154) を参考にした.

3.2 試験結果·考察

まず未洗浄石灰砕砂を用いたモルタルの浸透試験 の結果として、セシウム全量と可溶性セシウム量の 分布を図 2、セシウム全量と可溶性セシウム量の差 である固定量の分布を図3に示す.飽水供試体は乾 燥供試体と比較すると、より深部までセシウムが浸 透している一方で、供試体表面においてはセシウム 固定量が少ないことが分かる.表面の可溶性セシウ ム量はほぼ同じであったことから、飽水供試体の表 面がほとんど炭酸化していなかったため、固定能が 大きくならなかったと考えられる.

乾燥供試体については、どの浸せき条件において も、供試体表面付近では、セシウム全量のうち 60%、 内部では 80%ものセシウムが可溶性セシウムとし て存在しており、供試体表面付近で多くのセシウム が固定されている一方で、供試体内部では固定量が 少ない結果となった.浸せき条件が「乾燥 浸・乾」 が最も供試体表面付近のセシウム量が多くなってい る.これは、他の浸せき条件と比較して、浸せき面 から 6~12mm のセシウム量が少なくなっているこ

表1 浸透試験の浸せき条件

供試体名	供試体の 含水状態	浸せき条件
飽水	飽水	28日間塩化セシウム溶液 に浸せき
乾燥 浸	乾燥	6時間塩化セシウム溶液に 浸せき
乾燥 浸·乾	乾燥	6時間塩化セシウム溶液に 浸せき後、乾燥
乾燥 浸·乾·浸	乾燥	6時間塩化セシウム溶液に 浸せき後、1週間乾燥させ、 さらに6時間純水に浸せき

図2 セシウム全量および可溶性セシウム量の分布 (未洗浄石灰砕砂)

とから,乾燥によって内部の水分が供試体外部へ抜ける際,内部の可溶性セシウムが供試体の表面付近 へ移動し,固定されたのではないかと考えられる. また,浸せき条件が「乾燥 浸・乾・浸」について は,浸せき面から 8mm 付近で可溶性セシウム量が 増加している.これは,再度純水に浸せきした際, 水分の移動とともに供試体表面に固定されていたセ シウムが供試体内部へ移動したのではないかと考え られる.

次に,洗浄済石灰砕砂を用いたモルタル供試体の 浸透試験の結果として,セシウム全量と可溶性セシ ウム量の分布を図 5,セシウム固定量の分布を図 6 に示す.未洗浄石灰砕砂の供試体と比較すると,浸 透傾向は同様であるが,固定量が大きくなっている.

さらに、ゼオライト入りモルタル供試体の浸透試 験の結果として、セシウム全量と可溶性セシウム量 の分布を図6、セシウム固定量の分布を図7に示す. ゼオライト入り供試体の傾向としては、固定量が未 洗浄石灰砕砂の供試体と比較して大きくなっており、 これは、ゼオライトの高い吸着性能によるものであ ると考えられる.浸せき条件が「乾燥 浸・乾・浸」 については、浸せき面から 8mm 付近でのセシウム 量の増加がみられない. ゼオライトは高い吸着性能 とともに吸水性能も持っているため、供試体を乾燥 させることによりゼオライトが保持していた水分が なくなり、再度供試体を浸せきさせることで以前は 水分を保持していたゼオライトが新たにセシウムを 吸着したのではないかと考えられる.

4. おわりに

本研究はセシウムの吸着性、浸透性などの基本的 な特性を把握することを目的とした. セシウムはセ メントや細骨材に対して吸着性は低いが、吸着材で あるゼオライトには高い吸着性を示した.供試体中 でのセシウムの存在形態は、供試体表面付近では含 水状態に左右され、乾燥供試体では表面付近に多く のセシウムが吸着しており、セシウム全量のうち 60%が可溶性セシウムとして存在していた.また, 乾燥供試体は炭酸化が進行していると考えられ、炭 酸化の影響もあるのではないかと推測される. さら に、飽水供試体および乾燥供試体内部では80%もの セシウムが可溶性セシウムとして存在していた.以 上の吸着性が低く、供試体内では多くのセシウムが 可溶性セシウムとして存在することから、セシウム は水分移動とともに供試体内部を移動すると考えら れる.

図4 セシウム全量および可溶性セシウム量の分布 (洗浄済石灰砕砂)

(洗浄済石灰砕砂)

図6 セシウム全量および可溶性セシウム量の分布 (ゼオライト入り)

参考文献

杉山大輔,藤田智成, John A.Berry, Stephen
J.Williams: 収着基礎データに基づくセメント水和物
への核種収着機構のモデル解析,電力中央研究所研
究報告 T02025, 2003

図7 セシウム固定量の分布 (ゼオライト入り)