岡山大学環境生命科学研究科 学生会員 〇松本 享之

岡山大学環境生命科学研究科 正会員 吉田 圭介

岡山大学環境生命科学研究科 フェロー会員 前野 詩朗

1.はじめに

現在では多くの川づくりにおいて多自然川づくりが 実施され、水制や堰などの水理構造物を適度に配置し 河道断面形状を様々に変化させるなどの工夫がなされ ている. そのような河道断面形状が複雑に変化する河 川においては改修後の水理構造物周辺の流況変化を予 測することが重要になるが,模型実験による方法では 時間や費用といった簡易性の面で多くの制限を受ける ため,近年では数値解析により河川流況を把握する方 法が注目されている.

そこで本研究では、複雑な河道形状を有する場にも メッシュ生成が容易な非構造格子を用いた手法の解析 プログラムを対象とし,常・射流が混在した流れに対 する適用性を検討,及びその精度向上を試みた.解析 結果の妥当性を検討するにあたっては、勾配の異なる 直線水路、および単純な堰状の構造物を有する模型実 験により構造物を回り込む流れや常・射流が混在した 流れを再現し、その解析結果を比較することで解析法 の妥当性を検討する.

2. 解析概要

2.1 解析方法の概要

本研究では平面2次元浅水流方程式を基礎方程式と して数値解析を行う^{1).2).3)}.このモデルは,水平方向 の物理量を水深平均して取り扱うものであり、広範囲 な領域の流況や洪水氾濫流を再現するモデルとして一 般的に用いられている. 有限体積法に基づき基礎方程 式の離散化を行い、空間積分には流束差分離法を、計 算格子には非構造格子を用いた. さらに,時間方向の 離散化には2次精度 Adams-Bashforth 法を採用した.

解析プログラムの精度向上に当たり、計算の取扱い 方法にいくつかの修正を加えた. その修正点を以下に 示す.

(1) ドライベット条件

流出入させない条件、及び操作する数値の取扱いを 見直した (図-1参照).

(i) 対象セルLがドライベッドかつ隣接セルRがドラ イベッドの場合、隣接セルの水位に関わらず流出入な 1

(ii) 対象セルLがドライベッドかつ隣接セルRがウェ

ットセルの場合,図のbのように対象セルの水位が隣接 セルより大きければ流出入なし, aのように小さければ 诵常処理.

(iii) 対象セルLがウェットセルかつ隣接セルRがド ライベッドの場合,bのように対象セルの水位が隣接セ ルより大きければ通常処理, aのように小さければ流出 入なし.

(iv) 対象セルLがウェットセルかつ隣接セルRがウ エットセルの場合、隣接セルの水位に関わらず通常処 理.

(v) 隣接セルR が閉境界の場合流出入なし.

対象セルと隣接セル間に流出入がない場合、隣接セル に $h_R = h_L, z_R = z_L, u_R = -u_L, v_R = -v_L$ のノンスリップ条 件を与える.

ここに, h:水深, z:河床高, u:x方向の流速, v: y方向の流速とする.

(2) 摩擦勾配の取扱い

x, y方向の摩擦勾配 S_{fx}, S_{fv} を要素各境界線ごとに

(ii)

図-1 セル境界における流出入流量の制御

図−3 構造物形状

図-4 水路状況

諸定数	Case1-M1	Case2-M1	Case3-S1	Case4-S1	Case3S1.2	Case4S1.2	Case1-M2	Case2-M2	Case3-S2	Case4-S2	Case3S2.2	Case4S2.2
設定流量(m ³ /s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
クーラン数	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
マニングの粗度係数	0.025	0.025	0.025	0.025	0.01	0.01	0.025	0.025	0.025	0.025	0.01	0.01
下流端水深(m)	1.5	1.5	1.5	1.5	1.5	1.5	0.5	0.5	1.5	1.5	1.5	1.5
上流端水深(m)							0.467	0.467	0.467	0.467	0.467	0.467
初期水深(m)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
初期流速(m/s)	0	0	0	0	0	0	0	0	0	0	0	0
hmin(m)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
計算終了時間(s)	3600	3600	7200	7200	7200	7200	3600	3600	7200	7200	7200	7200

表-1 解析条件と諸定数

計算する方法から,対象セルの変数として取り扱うように変更した.

2.2 解析モデルの概要

(1) 一様水路モデルの概要

プログラムの改良による解析結果の精度向上を検討 するため、4ケースの勾配の異なる一様な水路で解析を 行った.解析水路は図-2に示す幅10m,長さ1000mの 勾配1/500,1/250,1/100,1/50の長方形断面水路を両 岸スリップ条件で解析した.河床勾配が大きな条件 Case3, Case4では粗度係数を変化させた.なお,Case3, Case4では定常状態に達する計算時間を要したため、計 算終了時間をCase1,Case2の数値の倍の値に設定した. 改良前後の解析結果と一次元不等流解析の結果を比較 し、その解析精度を評価した.表-1に解析条件と諸定 数を示す.

(2) 堰を有する水路モデルの概要

ドライベット条件の変更により水際部での計算が正 しく機能しているかを確認するため,水路幅2.6m,長 さ3.6m,勾配0の長方形断面水路に図-3に示す堰を 設置するモデルを設定した.堰が非水没と水没する条 件で検討するため,表-2に示すように流入流量を変化

表-2 解析条件と諸定数

諸定数	Case1	Case2	Case3
設定流量(m³/s)	0.01406	0.07218	0.10034
クーラン数	0.4, 0.7	0.4	0.4
マニングの粗度係数	0.02	0.02	0.02
下流端水深(m)	0.066	0.108	0.123
上流端水深(m)	0.467	0.467	0.467
hmin(m)	0.005	0.005	0.005
計算終了時間(s)	2000	2000	2000

させた Case1~3 で解析を行った.計算メッシュはいず れのケースも図-4 に示すものを適用し,流入境界は図 の左側とした.また,クーラン数の取扱いを検討する ため Case1のみクーラン数 0.4 と 0.7 で比較した.計算 終了時間は流況が安定した定常状態となるように設定 した.解析結果の精度向上を検討するため,水路の右 端から 50cm 及び水路中央のラインに沿ったセルの水 位と河床高を抽出し,実験結果と本解析結果を比較し た.

3.結果および考察

3.1 一様水路モデル

図-5は、Case2-M1の緩勾配水路に現れる水面形M1 の解析結果を示している.図の解析値(旧),(新)は、 それぞれ改良前と改良後の結果を示している.図では 分かりにくいが、プログラム改良前では等流部分にお いて一次元解析で得られる等流水深と2%程度の誤差 が見られた.改良後の水面形はその誤差が0.06%ほど に抑えられており、改良による精度向上が確認された.

図-6は、Case4-S1.2の急勾配水路に現れる水面形S1 の解析結果を示している.勾配が大きくマニングの粗 度係数が0.01と小さい場合には、改良前の下流端付近 の計算が不安定な状態となった.改良前は跳水位置が 上流側にかなりずれているが、改良後は流れが安定し、 跳水が想定される個所で発生している.粗度係数が大 きい場合には、改良前後で有意な差は見られなかった. このことより急勾配水路における粗度係数が小さい条 件下での解析精度が向上したと言える.

図-7は、Case1-M2の緩勾配水路に現れる水面形M2 の解析結果を示している.改良前の解析結果は下流端 付近を除き全体的にCase2-M1で述べた程度の誤差が 生じていたが、改良後はCase2-M1と同程度の誤差に改 善された.しかし下流端に着目すると水深が一次元解 析値を少し上回る結果となった.これは下流端に隣接 するメッシュで計算を行う場合、架空のセルを隣接す るセルとして対象セル自身の流速、水深、河床高を与 え計算するというプログラム上の条件により、下流端 で水路の勾配が反映されず水深が高く評価されてしま ったと考えられる.

図-8は、Case4-S2の急勾配水路に現れる水面形S2を 想定した解析結果を示している.改良の有無もかかわ らずM2の結果同様,解析値はほぼ一次元解析の数値と 一致した.また、改良後は改良前に比べ上流端付近で 一次元解析とよく一致したが、上流端付近で若干の水 面形の乱れが見て取れた.粗度係数が小さいケースで は改良後の振動は見られなかった.

3.2 堰を有する水路モデル

非水没の流況が現れる解析結果および実験での水面 形を図-9,10に示す.全体的に実験値に沿うような結果 を得ることができたが、上流側では差が大きい点も見 られた.また、クーラン数の取扱いによって流況解析 の変化を確認した.図-11,12に示す流速分布を比較す ると堰間の開口部を通過した流況がクーラン数0.7の 条件の場合にかなりの擾乱が見て取れる.このような 擾乱の激しい場所ではクーラン数を小さくすることで 安定した解析が行えるようになることが分かった.こ のことは適切なクーラン数を用いることにより、安定 した計算結果を得られることを示している.紙面の都 合上示していないが、水没の場合の改良後の結果は実

図-11 流速分布 (Case1. CR=0.7)

験結果をよく説明できている.

4. 結論

本研究ではFDS法を用いた解析の改良を行い、緩勾配 と急勾配の試験水路を用いた解析により精度向上の効 果を検討した.その結果以下のことを明らかにした.

- (1) 緩勾配水路の流況解析において、本研究で示した改 良法により等流状態での流況解析の水深の誤差が少 なくなり、精度向上が見られた.
- (2) 急勾配水路の流況解析において、射流から常流へ変 化する跳水現象も大きな乱れなく解析可能となっ た.
- (3) 非水没セルを含む流況を解析した結果, クーラン数 を小さくすると実験結果をよく説明できることが分 かった.

このことより改良後のプログラムでは常射流を含む流 況をより高い精度で解析できるようになったといえる. しかし、高い粗度を持つ急勾配水路において、上流端付 近の計算結果が少し乱れ,一次元解析値と誤差が生まれ てしまっていた点を今後改善する予定である.

参考文献

- 1) 前野詩朗, 小川信: 非構造格子有限体積法による水 理構造物周辺流れの数値解析,応用力学論文集, Vol.6, pp.857-864, 2003.
- 2) アキレス クマール ジャ, 秋山壽一郎, 浦勝, 重枝未玲: FDSを用いた洪水流の数値モデル,土木学会論文集, No.656/II-52, pp.73-82, 2000.
- 3) 重枝未玲, 秋山壽一郎, 重岡広美: ドライ・ウェッ ト状態となる地形起伏がある場での氾濫流の数値シ ミュレーション,水工学論文集,第51巻, pp.23-28, 2007.