株式会社 I H I インフラ建設 正会員 〇岩崎 初美 株式会社 I H I インフラ建設 正会員 山田 智之

1. はじめに

鋼構造物の腐食の進行状況を評価し,適切な維持管理をおこなう ことが重要になっている.鋼構造物は塗装等の防食機能が低下する と,腐食を生じ部材断面が減少し強度および剛性が低下する.

腐食した構造物の健全度を評価する際,保有性能が要求性能を満 足しているか検証する必要がある.その保有性能を推定するため, 腐食した鋼構造物の残存板厚,及びその凹凸分布を詳細に計測する ことが重要になっている.

鋼構造物の腐食形状の計測には,超音波板厚計による残存板厚の 計測,レーザー計測機による腐食表面形状の計測,画像計測による 腐食表面形状の計測などがある.超音波板厚計による計測は,計測 面となる腐食表面の凹凸形状に計測精度が左右されるが,画像計測 は非接触であるため,その影響が少ない.また,画像計測は,レー ザー計測機による計測に比べ安価であり,かつ,一定の精度を確保 できることが特徴である.そこで,本研究では,腐食した鋼板の画 像計測をおこない,計測点径の影響について検討した.

2. 計測方法

腐食鋼板の計測方法は画像計測を使用し、代表的な計測点につい ては実計測もおこなった.図1に画像計測の概要を示す.左右2台 のカメラを用い、幾何学的に供試体表面の三次元座標を求める.な お、今回はキャリブレーション基準体を用い、カメラ視点位置及び 角度を求める方法を使用した.計測に使用したデジタルカメラの諸 元を表1に示す.カメラは一般に市販されるものであり、工事現場 でも適用できるものである.また、画像計測ソフトはフォトカルク (アイティーティー)を使用した.撮影はカメラ間隔を約10cm、供 試体までの距離を約35cmとし実施した.一方、実計測はデップスゲ ージを使用した.

3. 供試体

供試体は縦70mm×横97mmの大きさの腐食鋼板で,孔食及び層状 さびが発生しているものを使用した.計測前にワイヤブラシで浮き 錆を除去した.また,画像計測の計測範囲は縦46mm×横46mmとし, 白色ペンで計測点を記入した.供試体の種類は2タイプとし,計測 点の直径を変化させた.なお,供試体は1体であり,2種類の計測 点径で記入した.供試体TYPE1は計測点径を0.5mmとし,供試体 TYPE2は計測点径を1.0 mmを目標に記入した.TYPE1・TYPE2と

キーワード 画像計測,写真計測,腐食深さ,計測点径

R側視線方向 P(X,Y,Z) をカメラ画像 PL(xL,yL,zL) 集康距離 視点L 視点R 視点R 視点R

図1 画像計測方法の概要

₹ I	7,	メフの諸	ī兀
+++++		NTRON	D01

カメラ本体	NIKON D3100		
レンズ	Ai Nikkor 28mm		
	f/2.8D		
焦点距離	28mm		
絞り	F2. 8~F22		
有効画素数	14.2 Mpixel		
記録画素数	4608×3072pixel		

写真1 供試体 TYPE1

写真2 供試体 TYPE2

連絡先 〒135-0016 東京都江東区東陽 7-1-1 ㈱IHI インフラ建設 TEL03-3699-2748 E-mail: hatsumi_iwasaki@iik.ihi.co.jp

も,計測点間隔は2.0 mm とした.

4. 計測結果

各計測値を使用し、写真1に示す1/4 ライン及び中央ライ ンについて鋼板面の高さを描き、腐食深さおよびその形状を 比較した.図2に1/4ライン上の鋼板面の高さを示す.TYPE 1は実測値に比較的近い値となっている. TYPE2は計測点径 が 1.0 mm であり、計測点の中で腐食面の高さ変化が生じて おり、精度が落ちたと推測できる.図3に中央ライン上の鋼 板面の高さを示す. 中央ライン上の計測についても, 同様の 傾向であった.

図4に、TYPE1で計測した全576点に関する腐食深さの頻 度分布を示す. 平均値 2.29 mm,標準偏差 0.70mm,最大値 3.95mm であった. 同様に, TYPE2 に関する腐食深さの頻度分 布を図5に示す. 平均値1.85 mm,標準偏差0.61mm,最大値 3.49mm であった. TYPE 2 では腐食深さの平均値が小さくなっ ており、深い腐食まで計測できておらず、計測精度が悪くな っている.また,標準偏差も比較的小さい値であった.

本供試体に長手方向の引張力が作用したと仮定し、この2 種類の計測方法の違いによる照査応力の差異について検討し た. 応力照査には,式(1),式(2)に示す村中・皆田・藤井 の引張降伏荷重評価式¹⁾²⁾を使用した. Py, σy, B, te, tavg, σ は、腐食鋼板の引張降伏荷重、両面平滑材の引張降伏応力度 ,板幅,有効板厚,荷重軸直角方向の平均板厚,荷重軸直角 方向の板厚標準偏差である.本応力照査では,健全時の板厚

$$Py = te \cdot B \cdot \sigma y$$
(1)
$$te = tavg - 0.7 \cdot \sigma$$
(2)

を 9mm, 板幅を 70mm, 引張作用応力度を 140N/mm² と仮定した. 表2に応力照査の比較を示す.腐食後の引張応力度増加率は , TYPE 1 が 1.61 倍, TYPE2 が 1.41 倍であり, 計測方法の違 いにより照査応力に1割以上の差異が発生した.

5. まとめ

腐食鋼板の画像計測において、計測点径の違いについて検 討した結果、計測点径 0.5mmの計測では比較的実測値に近い 値となった.

	TYPE1	TYPE2		
健全時鋼板幅×厚(材質)想定	70mm×9mm (SS400)	70mm×9mm (SS400)		
荷重直角方向の平均板厚	6.01mm	6.70mm		
荷重直角方向の板厚標準偏差	0.60mm	0.44mm		
荷重直角方向の有効板厚	5.59mm	6.40mm		
腐食後の引張応力度増加率	1.61	1.41		

表2 応力昭杳結果の比較

鋼板面の高さ(mm)

(mm)

鋼板面の高さ(

図5 腐食深さヒストグラム TYPE2

参考文献

1) 村中昭典, 皆田理, 藤井堅: 腐食鋼板の表面性状と残存耐荷力,構造工学論文集, Vol. 44A, pp1063-pp1071, 1998.3

2) (社) 土木学会: 腐食した鋼構造物の耐久性照査マニュアル, pp1-225~pp1-226, 丸善, 2009.3