山口大学大学院	Æ	鈴木素	之	学〇佐藤	影 登
宇部興産		田坂行	雄	有馬	「克則
宇部興産		米田	修	藤夫	+啓史
JFE商事テールワ	ン	酒井茂	賀	木柞	才隆志
ヒロセ		大谷義	則	志林	1直紀

土圧計

ベロフラムシリンダー

<u>1. はじめに</u>

帯鋼補強土壁工法は,壁面に作用する土圧力と壁面に接合 した補強材の引抜き抵抗力によって釣り合いを保ち,土留め 壁の効果を発揮するものである.施工中,壁面材に段階的に 土圧力が増加しており,条件によっては壁面に変状が出る場 合が考えられる.これまでに固化処理土を用いた場合の壁面 変位の挙動は明らかになっていない.そこで,本研究では, 応力制御式の補強材の土中引抜き試験機を用いて,補強材に 初期引抜き力を載荷した状態で,壁面変位の長時間観測を行 った.本文ではその結果を示し,変位挙動を考察する.

2. 補強土壁模型

図-1 に試験装置を模式的に示す. 試験装置は土槽, 引抜き 荷重を載荷するベロフラムシリンダー, 壁面材, 補強材, 壁 面に接続された水平変位計, 補強材に接続された水平変位計, 引抜き荷重用のロードセル等から構成されており, 土槽の内 寸法は長さ 700mm, 高さ 300mm, 幅が 200mm である. 上下 面による両面排水条件下で補強材を応力制御方式で引抜くこ とが可能である.

3. 試料土の物理特性

用いた試料は、美東粘性土と邑南シルトである. 表-1 に試料の物理特性を示す. 美東粘性土と邑南シルトは細粒分含有率 F_c が帯鋼補強土壁工法における盛土材料の適用上限の $F_c=25$ %の基準値¹⁾を超えており、そのため、固化材を添加・混合して固化処理土として使用した. 両試料とも、養生 28日で一軸圧縮強さ q_c が 500 kPa となるよう固化材添加量 Q_c を定めた.

200 mr 土槽 600 mm 700 mm [上面図] 変位計 (補強材) 可動壁 十日計 間隙水圧計 変位計 (可動壁 エアバッグ 補強材 300 mn 土槽 振動台 [下面図] 試験装置の概要 図-1

間隙水圧計補強材

表-1 試料の物理特性

試料名		美東粘性土	邑南シルト	
自然含水比(%)		27.5	37.6	
土粒子密度(g/cm ³)		2.751	2.697	
	礫分	2.4	4.1	
粒度	砂分	29.0	16.4	
(%)	シルト分	35.1	55.3	
	粘土分	33.5	24.2	
細粒分含	有率 (%)	68.6	79.5	
土質分類		粘土 [CH]	シルト [MH]	

表-2 静的引抜き試験結果

試料	含水比 (%)	固化材 添加量 (kg/m ³)	養生 時間 (Day)	上載 圧 (kPa)	引抜け荷 重T _{slip} (kN)
美東粘性土	45.0	60	20	0	3.37
邑南シルト	27.5	40	28	50	1.90

4. 荷重制御式引抜き試験

初期設定引抜き荷重 T_i を補強材の引抜け荷重 T_{slip} をもとに決定するために、荷重制御の静的引抜き試験を 実施した.以下に試験手順を示す.まず、試料を 4.75 mm ふるいにかけ、ソイルミキサーにより 5 分間撹拌 する.固化材を粉体で添加し、5 分間撹拌する.土槽の底面にろ紙、不織布を敷設し試料を充填する.試料 土は 10 層に分けて充填し、各層ごとにランマーによる締固めを行う.土槽底面から高さ 150 mm の位置に補 強材を設置する.土槽上部まで試料土を充填し、最上面を均し、最上面に不織布およびろ紙を敷設する.そ の後所定の上載 G_r を加える.所定期間 T_c で養生後、上載 Eを加えたまま直ちに引抜き試験を行う.引抜き 荷重 T は 1 分間で 0.2 kN ずつ増加させて、所定荷重に達したら 15 分間保持する過程を 1 ステップとし、こ のステップを補強材が引抜けるまで繰り返した. \mathbf{z} -2 に静的引抜き試験の試験結果(引抜け荷重 T_{slip} を)を示す.

5. 長期載荷引抜き試験

施工中の盛土を想定し、養生が十分ではない *T_c*=1 日,お よび3日時点で、引抜け荷重 *T_{slip}*の70%~75%を載荷する. 長期載荷引抜き試験の試験手順を以下に示す.引抜き試験に 準じて、土槽に試料を充填し、所定の上載圧 σ_vを載荷する. 所定期間、室内で養生後、上載圧を加えたまま直ちに初期設 定引抜き荷重 *T_i*を段階的に載荷する.このとき載荷ステップ は、前項の静的引抜き試験に準拠する.*T_i*を載荷した状態で 28 日間測定を行う.美東粘性土の *T_i*は *T_{slip}*の70%の2.4kN, 邑南シルトの *T_i*を *T_{slip}*の75%である 1.4 kN とした.

<u>6. 試験結果と考察</u>

図-2 に,美東粘性土の初期設定引抜き荷重 *T_i*を載荷する過程における壁面変位,引抜き荷重および経過時間の関係を示す.*T_i*の載荷に伴い,壁面変位はほとんど発生していないことが分かる.図-3 に長期載荷中の壁面変位の経時変化を示す. セメンテーションが十分に進んでいない*T_i*の載荷直後から測定終了まで,僅かな変位しか発生しないことが確認できる. *T_i*の載荷中と比較して,長期載荷中によって発生した変位は小さい.すなわち,固化処理を施したものは,長時間の載荷によって,壁面変位が生じる可能性は低いと考えられる.変位は管理基準値²⁾である壁高の 3%の変位量を下回っている.

図-4 に邑南シルトの初期設定引抜き荷重 *T_i*を載荷する過程における壁面変位,引抜き荷重および経過時間の関係を示す. *T_i*の載荷に伴い,壁面変位はほとんど発生していないことが分かる.図-5 に長期載荷中の壁面変位の経時変化を示す.このケースにおいても,壁面変位は28 日経過後も僅かな変位しか発生しておらず,壁高の3%以内であった.

<u>7. まとめ</u>

固化処理を施した細粒分の多い両試料においては、いずれ も短期間の養生日数であっても、引抜け荷重の70~75%の荷 重では大きな変位が発生しないことを確認した.発生した壁 面変位は壁面高さの0.1%以内であり、管理基準値の3%を大 幅に下回っていた.したがって、固化処理を施したものは、 短期養生であっても長時間の載荷によって壁面がはらみだす 可能性は低いと考えられる.

[参考文献]

1) 補強土(テールアルメ)壁工法補強土設計・施工マニュアル 第3回改訂版, p.37, 2003.

2) 補強土(テールアルメ)壁工法補強土設計・施工マニュアル 第3回改訂版, p.172, 2003.

