普通強度 RC はりのせん断強度に及ぼす収縮の影響

広島大学大学院	学生会員	〇中山	紘紀

- 広島大学大学院 学生会員 三谷 昂大
- 広島大学大学院 学生会員 太田 光貴
- 太平洋セメント株式会社 正会員 兵頭 彦次

広島大学大学院 フェロー会員 佐藤 良一

1. はじめに

近年,骨材の低品質化や骨材自身の収縮によるコンクリートの高収縮化が大きな問題となっている。この 収縮による鉄筋等の拘束でひび割れ発生リスクが高まることが知られており,実構造物において多数のひび 割れ発生事例が生じた。既往の研究においては,高強度コンクリートにおけるせん断強度への収縮の影響を 評価するための,斜めひび割れ発生強度算定式が提案されるに至っている¹⁾。しかし,普通強度コンクリー トにおいては未解明であり,これを解明することは今後避けられない技術課題である。そこで本研究では, 高収縮コンクリートを用いて,有効高さ250,500,1000mmの3種類のせん断補強筋及び圧縮鉄筋を有しな い RC はりを作製し,せん断実験により,せん断強度と寸法効果に及ぼす収縮の影響を実験的に検討するこ とを目的とする。

2. 実験概要

2.1 使用材料および配合

本研究で用いた使用材料を表 -1 に, コンクリ ートの配合を表 -2 に示す。本研究で用いた骨材 は,比較的コンクリートの乾燥収縮が大きくなる 骨材を用いており,コンクリートの収縮を増大す るために粗骨材,細骨材いずれにも用いた。

2.2 RC はり供試体概要

RC はり供試体は,高収縮骨材(HSA)を用いて 引張鉄筋比 1.03~1.06%,W/C=0.5,収縮の程度 が高収縮と低収縮の 2 種類を作製した。寸法効果 の検討を行うため有効高さ 250,500,1000mm、 それぞれ 2 体ずつ,計 24 体作製し,供試体名を HSA0.5(p=1.0%)-250,500,1000 とおいた。ここで, 高収縮化は材齢 7 日まで封緘養生,以降気中養生 により,低収縮化は封緘養生(以後これらを drying, sealed と称す)により行った。また,コ ンクリートの自由収縮ひずみを測定するため,寸 法が 100×100×400mm の埋め込み型ひずみゲ ージを埋設した無拘束供試体を作成した。RC は り供試体概要を図 - 1,無拘束供試体概要を図 - 2 に示す。

表-1 使用材料

材料名	記号	種類 / 特性
セメント	С	普通ポルトランドセメント / 密度:3.16g/cm ³
細骨材	S	砂岩砕砂 / 表乾密度:2.65g/cm ³ , 吸水率1.86%
粗骨材	G	砂岩砕岩 / 表乾密度:2.69g/cm ³ , 吸水率0.89%
混和剤	AD	高性能AE減水剤(ポリカルボン酸系)
	AE	AE剤

表-2 コンクリートの配合

W/C	s/a	単位量 (kg/m ³)					
(%)	(%)	W	С	S	G	AD	AE
50	46.4	170	340	832	977	2.38	0.0153

2.3 計測項目

コンクリートの収縮ひずみは、無拘束供試体中央部に設置した埋込み型ひずみゲージ(標点距離: 100mm,弾性係数:約40N/mm²)により計測した。 RC はり供試体の鉄筋ひずみは、供試体支間中央位置でひずみゲージ(ゲージ長5mm)により計測した。

3. 実験結果

3.1 材料の力学特性

表-3 に各 RC はり供試体と同様の養生を行った コンクリートの載荷時における力学特性として圧縮 強度と割裂引張強度およびヤング係数を示す。

3.2 収縮ひずみの経時変化

図-3 に無拘束供試体の収縮ひずみと土木学会コ ンクリート標準示方書(以下示方書)²⁾による収縮ひ ずみの推定値の経時変化を示す。本研究で用いたコ ンクリートの収縮ひずみは示方書による推定値に比 べおよそ1.5倍の収縮が生じていることがわかった。

3.3 鉄筋ひずみの経時変化

図 - 4 に RC はり供試体の支間中央における鉄筋 ひずみの経時変化を示す。収縮を鉄筋が拘束するこ とによって発生する鉄筋ひずみは、載荷時で drying はおよそ $234 \times 10^{-6} \sim 308 \times 10^{-6}$, sealed でおよそ $24 \times 10^{-6} \sim 73 \times 10^{-6}$ 生じた。

3.4 載荷試験結果

RC はり供試体の drying,と sealed についての荷重 と支間中央のたわみ関係を有効高さごとにそれぞれ を図-5 に示す。有効高さが大きくなるにつれて, drying は sealed よりも斜めひび割れ発生強度が低下 し,たわみも大きくなる傾向が認められた。

3.5 寸法効果の検討

図 - 6 に斜めひび割れ発生強度と有効高さの関係 を示す. τ_cは, drying は sealed よりも 5~15%低下 し, 寸法効果も卓越する傾向が認められた。収縮の 影響を統一的に評価するため等価引張鉄筋比 ps,e³ の概念を用いて検討した。等価引張鉄筋比とは, 図 -7 に示すように, 収縮による載荷前後の引張鉄筋ひ ずみ変化量の増大は, 機能的には引張鉄筋比が小さ くなることと等価であるとするもので, 式(1)で示さ れる。

供試体名	有効高さ	材齢	圧縮強度	割裂引張強度	ヤング係数
	(mm)	(日)	(N/mm²)	(N/mm²)	(kN/mm²)
HSA0.5(p=1.0)- dryingA	250	125		3.3	20.06
	500	288 37.3	37.3		
	1000				
HSA0.5(p=1.0)- dryingB	250	125	37.3	3.2	
	500	288		3.1	20.06
	1000				
HSA0.5(p=1.0)– sealedA	250	91	38.6	3.2	23.87
	500	120	41.9	3.0	25.88
	1000				
HSA0.5(p=1.0)- sealedB	250	91	38.6	3.2	23.87
	500	100	41.9	3.2	25.00
	1000	120			20.00

表-3 載荷時材料特性

 $p_{s,e} = \frac{\varepsilon_s}{\varepsilon_s - \varepsilon_{s0,def}} p_s$

(1)

図-8 に示すように、drying と sealed の斜めひび割れ 発生強度 $\tau_{c,e}$ は、等価引張鉄筋比の概念を用いること により、収縮の大きさ、有効高さによらずほぼ統一的 に評価できることがわかる。

4. まとめ

- (1) 本研究で用いたコンクリートの収縮ひずみは、示 方書の予測式と比較するとおよそ 1.5 倍の収縮が 生じていることがわかった。
- (2) 載荷時の引張鉄筋ひずみは、 -drying でおよそ 308×10⁻⁶, sealed でおよそ 40×10⁻⁶生じた.
- (3) 斜めひび割れ発生強度は drying のほうが sealed よりも 5~15%低下した.
- (4) drying と sealed の斜めひび割れ発生強度は, 等価 引張鉄筋比の概念を用いることにより, 収縮の大 きさ, 有効高さによらずほぼ統一的に評価できた.

【参考文献】

- 河金甲:「高強度 RC はりの斜めひび割れ発生強度に 及ぼす収縮の影響評価」,土木学会論文 EVol.65 No.2,178 - 197, 2009.4
- (2) 土木学会:2007 年制定コンクリート標準示方書 設 計編
- (3) Sato, R. and Kawakane, H. : A new concept for the early age shrinkage effect on diagonal cracking strength of reinforced HSC beams, Journal of Advanced Concrete Technology, Vol.6,No. 1, pp. 45-67, 2008. (Invited paper)

図-8 収縮を考慮した斜めひび割れ発生強度