	Andre Primantyo Hendrawan					
	正会員	石藏	良平		吉本	和弘
	学生会員	川原	知士	正会員	松田	博
山口大学大学院	学生会員()稲澤	崇史			

1. まえがき

地震時に観測される地盤内のせん断履歴は多方向に生 じる。すでに多方向せん断と一方向せん断が繰返しせん 断中の地盤の沈下特性に及ぼす影響について検討が行わ れている^{1),2)}。本研究では多方向繰返しせん断を受ける 地盤の有効応力に着目し、推定式の提案を行っている。 本報告では、繰返しせん断時の位相差を変化させて実験 を行い、提案する推定式の適用範囲についての検証を行 った。

2. 試験装置・試料及び試験方法

用いた装置は多軸単純せん断試験機である。この装置 は供試体(直径 75mm、高さ 20mm)に2方向から独立し てせん断変位を与えることができる。用いた試料は、豊 浦砂と高炉水砕スラグ(GBFS)である。試料の物理特性 を表-1 に示す。供試体は飽和状態とし、相対密度Drを 50,70,90(±3)%に調整してせん断箱に詰め、圧密圧力 σ'_{v0} =49kPaで予圧密後、定体積条件の下で繰返しせん断 を行い、有効応力変化を測定した。繰返しせん断波形は 周期T=2.0secのsin波であり、図-1(b)に示す載荷パターン で試験を行った。せん断ひずみ振幅 γ の定義は、供試体底 面中央が描く円の半径を供試体の高さで除した値とした。 既往の研究²⁾よりG*, Γ を式(1),(2)で定義した。G*は累 積せん断ひずみであって、供試体底面中央の始点からの 軌跡上の移動量の総和を意味し、 Γ は合せん断ひずみで、 始点から現在地の距離を表す。

$$G^* = \bigtriangleup \sum G^* = \sum \sqrt{\left(\bigtriangleup \gamma_x^2 + \bigtriangleup \gamma_y^2 \right)} \quad \cdots (1) \qquad \Gamma = \sqrt{\left(\bigtriangleup \gamma_x^2 + \bigtriangleup \gamma_y^2 \right)} \quad \cdots (2)$$

また、松田が提案した地震後に粘土層に蓄積する間隙 水圧を予測する方法³⁾に基づき式(3)~(5)を導いた。

$$\frac{\bigtriangleup \sigma_V}{\sigma_{V0}} = \frac{G^*}{\alpha + \beta \cdot G^*} \quad \dots (3) \qquad \alpha = A \cdot \gamma^m \dots (4)$$
$$\beta = \frac{G^*}{B + C \cdot G^*} \quad \dots (5)$$

ここに, A, B, C, m は実験定数である。

本研究では、相対密度 Dr=50, 70, 90(%)とし、推定式の 位相差 θ が変化した条件での適用範囲を検証するために、 位相差 $\theta=20^{\circ}, 45^{\circ}, 70^{\circ}, 90^{\circ}$ の条件で試験を実施した。

3. 試驗結果

図-2,図-3に、豊浦砂における位相差 $\theta=90^{\circ}$ の条件で相対密度が変化した場合の有効応力減少比/ $\Delta\sigma_v/\sigma_{v0}$ '/と累積せん断ひずみ G^* の関係を示す。また、式(3),(4),(5)を用いて求めた計算値もあわせて示す。計算に使用した実験定数を表-2に示す。両図ともに、実験値は γ が大き

の展示(DI=90%)

表-2	豊浦砂	りの実	験定	数

Toyoura sand	Experiment fixed number					
	Α	В	С	m		
Dr=50%	1.000	0.012	0.960	-0.400		
Dr=70%	1.200	0.020	1.050	-0.550		
Dr=90%	1.900	0.015	0.980	-0.700		

くなるほど有効応力が初期の段階で大きく減少している。 また、計算値は実験値とよい一致が見られた。両図を比 較すると相対密度が大きな方が、初期段階の有効応力の 減少が軽減されている。

図-4は、豊浦砂における相対密度Dr=70%, せん断ひずみ振幅 $\gamma = 0.1\%$ の条件で、位相差 θ を変化させた場合の 有効応力減少比/ $\Delta \sigma_v / \sigma_{v0}$ '/と累積せん断ひずみG*の関係 を示す。式(3), (4), (5)から求めた計算値もあわせて示 す。実験結果の有効応力の減少は位相差 θ の変化によら ず、あまり変化は見られなかった。しかし、傾向として は、実験結果の有効応力の減少は $\theta = 90^\circ$ で最大を示し、 $\theta = 45^\circ$ で最小を示した。また、位相差 θ によらず計算 値は実験値と概ねよい一致をした。

図-5は、図-4と同一条件でせん断ひずみ振幅 γ =1.0%とした条件での結果を示している。 γ =1.0%の条件では図-4に示す結果と同様に、有効応力の減少は位相差 θ の変化によらず、あまり変化は見られなかった。また、計算値は γ =1.0%でも位相差 θ =45°をのぞき、位相差 θ によらず、実験値と概ねよい一致を示した。

図-6は、GBFSにおける相対密度Dr=70%, せん断ひずみ振幅 $\gamma=0.1\%$ の条件で、位相差 θ を変化させた場合での有効応力減少比/ $\Delta\sigma_v/\sigma_{v0}$ '/と累積せん断ひずみG*の関係を示す。豊浦砂と同様に、実験結果の有効応力の減少は位相差 θ の変化によらず、あまり変化は見られなかった。また、計算値は位相差 θ によらず、実験値と概ねよい一致をした。

図-7は、GBFSの実験結果の例として、位相差 $\theta=45^{\circ}$ のときの有効応力変化/ $\Delta\sigma_v/\sigma_{v0}$ '/と累積せん断ひずみ G^* の関係である。せん断ひずみ振幅 γ の大きさによらず、計算値と実験値は概ねよい一致をした。

<u>4.まとめ</u>

本報告では、2種類の粒状土に対して、位相差を変化 させた条件で試験を実施し、有効応力の減少に及ぼす位 相差の影響について検討した。また、有効応力変化の実 験値と推定式による計算値との比較を行った。その結果、 本報告で行った相対密度、せん断ひずみ振幅の条件では、 有効応力の減少に及ぼす位相差の影響は小さい傾向を示 した。また、位相差によらず、計算値は実験値と概ねよ い一致を示した。

【参考文献】

1) Pyke R., H. B. Seed, and C. K. Chan., Settlement of sands under multidirectional shaking, Journal of the Geotechnical Engineering Division, 101(GT4), pp.379-398, 1975.

 2) 松岡元、福武毅芳:任意方向単純せん断におけるダイレイ タンシーの統一的解釈,土木学会論文集 No.412/Ⅲ-12, pp.143-151.1989.

3) 松田博:粘土層の地震後沈下過程の推定,土木学会論文集 No.568/III-39, pp. 41-48.1997.6.

国本 夏福($\gamma = 0.1\%$)

図-5 豊浦砂の G*と有効応力減少比の 関係 (y=1.0%)

図-6 GBFS の G*と有効応力減少比の関 係 (y=0.1%)

図-7 GBFS の G*と有効応力減少比の関 係(θ=45°)