軽量動的コーン貫入試験の災害調査への適用性について

広島大学大学院工学研究科 学生会員 〇花岡 尚

広島大学大学院工学研究科 学生会員 川口 将季

広島大学大学院工学研究科 国際会員 土田 孝

広島大学大学院工学研究科 国際会員 加納 誠二

広島大学大学院工学研究科 学生会員 中川 翔太

広島大学大学院工学研究科 学生会員 川端 昇一

1. はじめに

自然斜面の豪雨時の崩壊を解析する場合,大きな問題は自然斜面の強度定数を評価することが困難な点である.筆者らは自然斜面において一人で試験可能な軽量動的コーン貫入試験を用いて,中国地方の風化花崗岩(まさ土)斜面を対象とした貫入抵抗値 q_d,飽和度 S_rから強度定数を推定する方法を提案している¹⁾.平成22年7月に発生した広島県庄原市の豪雨災害²⁾では,風化流紋岩層から形成された斜面において多くの崩壊が多くみられた.本研究は,崩壊が発生した風化流紋岩斜面を対象に現地で軽量動的コーン貫入試験を実施するとともに,採取した試料を用いて室内一面せん断試験を実施した.室内試験によって求めた強度定数と,強度推定式から求めた強度定数を比較し,強度定数推定法の風化流紋岩斜面への適用性について検討した.

2. 軽量動的コーン貫入試験を用いたせん断強度定数推定法

風化花崗岩を対象に軽量動的コーン貫入試験の貫入抵抗値 q_d と飽和度 S_r から強度定数 ϕ_d と c_d を推定する 式は以下の通りである¹⁾.

$$\phi_d = 29.9 + 1.61 \ln(q_{d5}) + 0.142 S_r \qquad (1)$$

$$c_d = 10.6 + 1.19 \ln(q_{d5}) - 0.041 S_r \qquad (2)$$

$$q_{d5} = q_d - 0.01 \times (\gamma_t \cdot z - 5) \qquad (3)$$

ここに, *Sr*: 飽和度(%), q_{d5} : 土被り圧 5kPa における貫入抵抗値(MPa), q_d : 貫入抵抗値(MPa), γ_t : 土の 単位体積重量(kN/m³), *z*: 深さ(m) である.

3. 2010年7月に庄原市で発生した土砂災害で崩壊した風化流紋岩層の一面せん断試験結果

図-1 に風化流紋岩層および風化花崗岩層の粒度曲線を示す.図のように細粒分含有率は 33%であり、風化 花崗岩層(まさ土)に比べると細粒分が多いこと 100 _____

花両石層(よさ上)に比べると神社力が多いことが特徴である.

2010年庄原土砂災害においてもっとも斜面崩壊 と土石流の発生が激しかった篠堂地区において, 崩壊源頭部から採取した試料を用いて,飽和度*Sr*= 30,50,70%の3条件,初期間隙比 eo=1.1,1.2, 1.3,1.4の4条件を組み合わせた計12の条件で一 面せん断試験を実施した.試料は2mm以下にふる ったものを用いた.

一面せん断試験の結果を図・2に示す.粘着力は,

間隙比が大きくなり,飽和度が高いほど小さい傾向にある. これは,飽和度が高いと砂粒子間に働くサクションが消失す るためと考えられる.内部摩擦角についても同様に eoが大き く Srが大きいほど小さい傾向にあるが,間隙比および飽和度 に対する依存度は,粘着力に比べて極めて小さいといえる. これらの結果より以下の式が導かれ,せん断強度定数を飽和 度と間隙比の関数で表すことができた.

$$c = (0.47S_r + 34.6) + (-0.63S_r + 4.5) e$$
(4)

$$\phi = (-0.30S_r + 57.6) + (0.18S_r - 14.3) e \tag{5}$$

軽量動的コーン貫入試験を実施した個所において,深度約 30cmで不撹乱試料をサンプリングし,飽和度および間隙比を 求めたところ,飽和度は約48%,間隙比は約1.42であった. これらから,式(4)および式(5)を用いてせん断強度定数を算出 すると,粘着力は約20.8kN/m2,内部摩擦角は35.5°となる.

4. せん断強度定数推定法の適用性の検討

軽量動的コーン貫入試験による貫入抵抗値 qdを用いたせん 断強度定数推定式(式(1)~(3))は、風化花崗岩を対 象に得られたものである、この式について、風化流 紋岩に対する適用性を検討する.図-3は風化流紋岩 斜面を対象に行った軽量動的コーン貫入試験の結果 から、式(1)~(3)を用いて推定されるせん断強度定数 を求め、一面せん断試験と現場の間隙比、飽和度か ら推定した強度定数の比較である.推定値はばらつ きがあるが、Tsuchida らはばらつきの範囲の下限値 を用いることを提案している. 下限値を用いると, 内部摩擦角の推定値は約1°程度過大評価しており, 粘着力は約 10kN/m² 過小評価している. これは, 図 -1 に示す粒度曲線のように、風化流紋岩は風化花崗 岩よりも細粒分を多く含むため、粘着力が大きいと 考えられる.このように、特に粘着力に関する違い が大きいため,風化花崗岩より求めた式(1)~(3)を風 化流紋岩にそのまま適用することは難しいと考え られる.

5. 崩壊前の地形の推測

軽量動的コーン貫入試験と測量,目視等を行うこ とにより,土砂災害現場の崩壊前後の斜面の地層構 成を推測することができる.ここでは写真-1に示す

(b)内部摩擦角

図-2 せん断強度定数の比較

写真-1 平行斜面の崩壊

図-5 判別の代表例

崩壊地について検討する.この斜面の崩壊の特徴は, 谷地形ではない平行斜面の崩壊であること,崩壊下部 に火山灰質土である黒ボク層が存在したことであっ た.

この崩壊の周辺で軽量動的コーン貫入試験を行った.図-4 に崩壊部周辺の軽量動的コーン貫有試験の結果を示す.図中のグラフの縦軸は深度(0~3.0m),横軸は貫入抵値 q_d(0~15MPa)を示している.貫入抵抗値が 10MPa 以上であれば十分な強度を持った基盤層だと判断した.1MPa 前後の低い貫入抵抗値を示す層は,黒ボク層,腐葉土層または崩土である.これらの区別は,目視や現場の写真から判断した. 2MPa~10MPa を示す層は風化流紋岩層である.判別の代表例を図-5 に示す.

崩壊部両側の貫入試験の結果を比較すると,基盤層 までの深度と貫入抵抗値の関係が類似しているため, 崩壊部も崩壊前は両側の未崩壊部と同じ地形であっ たと考えられる.基盤層までの表層厚は,崩壊下部に 向かって厚くなっていることがわかった.さらに現場 での調査と測量により黒ボク層が崩壊部の途中から 存在すること,これらの下部の崩土の層厚,崩壊部の 形状が確認できた.これらの結果より,図-6に示す崩 壊後の断面は,図-7のような地形・地層分布であった

と推測できる.黒ボク層は,風化流紋岩より透水性が悪いため下部の黒ボク層の存在がこの地点の平行斜面の 崩壊に寄与している可能性が考えられる.以上のように,崩壊前後の地形・地層分布を把握することは,崩壊 のメカニズムを推定する上で,重要な手掛かりとなる.

6. まとめ

- (1) 2010 年 7 月に発生した広島県庄原市の災害現場で採取した風化流紋岩を対象として行った一面せん断試験の結果より、せん断強度定数 c、 φ を飽和度 Sr と間隙比 e の関数で表すことができた.
- (2) 風化花崗岩を用いた試験から提案したせん断強度定数の推定式は、内部摩擦角に関しては過大評価し、粘着力に関しては過小評価しており、検討が必要である.
- (3) 軽量動的コーン貫入試験を崩壊部周辺で実施することにより、崩壊前の地形を推測することができる.

参考文献:

- 1)加納誠二,土田孝,川口将季,小村尚文:細粒分を含む地盤の簡易な強度定数推定法に関する研究,地盤 と建設, Vol.27, No.1, pp.73-80, 2009
- 2) Athapaththu Rasika・土田孝・管和暁・佐藤崇史; Investigation of Spatial Variability of Natural Masado Slopes, ICCEE2006, pp67-78, 2006