山口大学大学院理工学研究科	正会員	○永野	博之
九州大学大学院工学研究院	正会員	橋本	晴行
中国電力株式会社	正会員	黒田	佳祥
九州大学大学院工学府	正会員	池松	伸也

1. 目的

2009年7月21日,山口県では早朝から各地で激しい 豪雨となり,山口市や防府市を中心に水害,土石流災 害が発生した.特に防府市では,多くの山腹斜面で発 生した崩壊が土石流化し,大量の土砂が流出した.こ の災害による山口県内の死者17名のうち14名は防府 市に集中しており,土石流災害の甚大さを物語ってい る.今後の土砂災害対策にあたり,土石流による流出 土砂量を評価することが重要となる.本研究は,防府 市内の土石流発生渓流を対象とし,現地調査,航空測 量データの解析,1次元流動シミュレーションを用いて, 発生した流出土砂量を評価するものである.

2. 内容

2009 年 7 月 31 日~10 月 14 日にかけて真尾・石原地 区の土石流発生渓流において現地調査を行い,痕跡水 位からピーク流量を推定した.また,現地調査と航空 測量データを基に,1次元の流動シミュレーションを行 い,流出土砂量を評価した.

2-1. 発生した土石流の概要

図-1 に佐波川の流域図を示す.防府市は山口県のほぼ中央部の佐波川の下流域に位置し,土石流は佐波川の支川流域で発生した.図-1 に特に被害の大きかった 真尾・石原・八幡谷・剣川地区を×印で示す.

7月19日から26日にかけ,暖かく湿った空気が梅雨 前線に流れ込み,前線の活動が西日本で活発化した. これに伴い,梅雨前線に近い山口県では21日の明け方 から昼過ぎにかけて,非常に激しい豪雨となり,防府 市を中心に土石流が多発した.図-2に7月21日の真 尾・防府観測点で観測された1時間雨量・総雨量を示 す.真尾観測点は土石流が発生した渓流近傍の観測点 であり,防府観測点は防府市中心地の観測点である. 降雨のピークは7~9時,11~12時の2回あり,21日 の総雨量は真尾観測所で266mm,防府観測所で256mm に達した.土石流は2回目のピークである12時前後に

多発した.

2-2. 現地調査とピーク流量の推定

表-1 に真尾・石原・八幡谷・剣川渓流の概要を示す. 石原地区では3 渓流において土石流が発生した.ただし,崩壊土砂量の評価は崩壊が土石流化し,下流端まで流下した崩壊部のみを対象とした.

渓流名	真尾	石原A	石原B	石原C	八幡谷	剣川
流域面積	1.1km ²	0.3km ²	0.4km ²	0.1km ²	1.4km ²	2.0km^2
渓流延長	1,900m	1,100m	1,600m	800m	2,300m	2,600m
崩壊土砂量	$2,300m^3$	$2,500m^3$	1,600m ³	1,300m ³	$5,000 \text{m}^3$	40,200m ³
平均勾配	11°	11°	11°	10°	7.5°	5.5°
堰堤の有無	治山堰堤 1基※破損	無	無	無	透過型砂防 堰堤2基	不透過型砂 防堰堤2基

表-1 真尾・石原・八幡谷・剣川渓流の概要

表-2 痕跡水位から推定されるピーク流量と流速

渓流名	真尾	石原B
断面積(m ²)	20	42
水深 (m)	2.2	3.4
勾配(°)	13	8.0
流量(m ³ /s)	171	365
流速(m/s)	8.6	8.6

(1) 土石流発生渓流における断面調査

真尾地区における土石流流下河道の縦断図 ¹⁾と流下 幅を図-3 に示す. 真尾地区では真尾川の支川の上田南 川で土石流が発生した. *x_d*: 真尾川の合流点からの距離, *x*:計算上流端からの距離である. 流域内に砂防施設は なく,治山堰堤が 1 基整備されていた. 規模の大きい 崩壊は崩壊 B, C である. 崩壊 B, C で発生した土石流 は No. 3 で合流しており,合流部付近の河床は侵食され て露岩していた. No. 3~No. 8 までは露岩箇所が多く, 侵食傾向にあった. No. 8~No. 14 までは侵食後に堆積が 起きていることが確認された. No. 11~ No. 12 に整備さ れていた治山堰堤は,袖部を残して破壊されていた. No. 11 より下流では 20m を超える幅で土石流が流下し た形跡が確認された. また, No. 12 では侵食された右 岸付近に巨礫や流木が集中的に堆積していた.

(2) 痕跡水位からのピーク流量の推定

表−2 に痕跡水位から推定したピーク流量と流速を示 す. 真尾・石原地区におけるピーク時の痕跡水位と平 均粒径の調査結果から流速係数を*φ=4* と推定し,調査 断面において等流条件を仮定して,ピーク流量と流速 を算出した.古川ら²⁾は真尾地区において流量が 212.9~287.6m³/s,石原地区において 14~15m/s と報告し ており,今回の推定値と概ね一致していた.

2-3. 土石流の1次元流動シミュレーション

(1) 基礎式

表-3 に基礎式の一覧を示す.流れを長方形断面の 1 次元漸変流とし,開水路非定常流の基礎式を用いた.

図-3 土石流流下河道の縦断図¹⁾と流下幅(真尾)

表-3 基礎式の一覧

$\frac{\partial Q}{\partial t} + \frac{\partial (vQ)}{\partial x} = -gBh \frac{\partial H}{\partial x} - (B + 2h) \frac{v^2}{\phi^2}$ • 全相の連続式	Q v θ g	: ;	流量 断面平均流速 河中名职
$\frac{\partial U}{\partial t} + \frac{\partial (VU}{\partial x} = -gBh \frac{\partial H}{\partial x} - (B+2h) \frac{v}{\phi^2}$ ・ 全相の連続式	$v \\ \theta \\ g$:	断面平均流速
・全相の連続式	θ	: 3	コウクヨ
・全相の連続式	g		河床勾配
		:]	重力加速度
$\partial(Bh) \partial O$	В	: }	流路幅
$\frac{\partial (t)}{\partial t} + \frac{\partial z}{\partial x} = hi_s + Bi_b + q_{tin}$	h	: 2	水深
01 04	H	: 2	水位
・固相の連続式	ϕ	: }	流速係数
$\partial(CBh) = \partial(C, O)$	i s	: 1	側岸侵食速度
$\frac{\partial(CBh)}{\partial t} + \frac{\partial(C_TQ)}{\partial t} = C_*hi_s + C_*Bi_b + q_{sin}$	i _b	: 3	河床侵食速度
OT OX	q_{tin}	: 1	側方流入流量
・河床の変動式	С	:	断面平均濃度
$\partial(z\cos\theta)$	C_T	: }	流砂濃度
$\frac{\partial(2\cos\theta)}{\partial t} + i_b = 0$	C *	: 1	最密充填濃度
OI	q_{sin}	: 1	側方流入土砂量
・側岸の変動式	z	: 3	河床高
∂B	С то	: 3	平衡流砂濃度
$\frac{\partial B}{\partial t} - i_s = 0$	$q_{s \infty}$: 1	単位幅当たり
CI		3	平衡流砂量
・河床の侵食速度			
$C_{_T} < C_{_{T\infty}} : i_b = k_b \left(C_{_{T\infty}} - C_{_T} \right)^p \cdot v (\textbf{\textbf{(eg)}})$			
$C_{T} \geq C_{T\infty} : i_{b} = -k_{b} \left(C_{T} - C_{T\infty} \right)^{p} \cdot v \left(\# \overline{\mathfrak{A}} \right)$			
・側岸の侵食速度			
$i_s = k_s \cdot v$			
・平衡流砂濃度			
$C_{T\infty} \approx \frac{Bq_{s\infty}}{Q}$			

渓流名	真尾	石原A	石原B	石原C	八幡谷
計算区間	本川: 1,450m 支川: 100m	本川:750m 支川:425m	1,000m	700m	本川 : 1,100m 支川1: 450m 支川2: 175m
崩壊土砂量Vs	本川: 1,000m ³ 支川: 1,300m ³	本川: 1,850m ³ 支川: 600m ³	1,650m ³	1,300m ³	本川:3,150m ³ 支川1:400m ³ 支川2:1,400m ³
崩壊流出土砂濃度Co	0.2, 0.4				
崩壊継続時間T	30sec, 60sec				

<u>表-4 各渓流における計算区間と崩壊条件</u>

ただし、濃度分布は一様と仮定し、 $C=C_T$ とした. 侵食・ 堆積速度は、高岡³⁰の提案する侵食・堆積速度式を用い た. 河床の侵食・堆積の判定は平衡流砂量式から求め られる平衡流砂濃度と流砂濃度の大小により決定し、 $k_b=0.01, k_s=0.01, p=0.7$ とした.

(2) 崩壊条件

表-4 に対象渓流の計算区間と崩壊条件を示す.上流 端では崩壊を考慮した境界条件(流量・流砂濃度・水 深)を与え,崩壊モデルは崩壊土砂量 V_sが,崩壊継続 時間 T 中に,崩壊流出土砂濃度 C₀で土石流化するとし た.崩壊土砂量 V_sは航空写真から算定した.崩壊継続 時間 T や崩壊流出土砂濃度 C₀の評価は困難なため,各 渓流において4パターンの崩壊条件を設定した.

(3) 計算条件

表-5 に計算条件を示す. 初期河床高は LP データより 作成した. 初期の流路幅は笠井⁴⁾の提案する式を現地河 道に適合するように修正したものを用いた. 平均粒 径・流速係数は現地調査より得た値を用いた. 河道へ の横流入量は合理式より算定した.

(4) 計算結果

図-4 に真尾・石原 B における上流端・下流端の流量 ハイドログラフを示す.ただし,真尾・石原 B ともに C₀=0.2, T=30secのケースである.土石流の流量はどの 渓流においても上流域では漸次増加したが,下流域で は崩壊条件次第で減少する渓流もあった.現地調査で 推定した地点での計算のピーク流量と流速は,真尾で 流量 188m³/s,流速 8.2m/s,石原 B で流量 270m³/s,流 速 7.1m/s であり,現地調査結果と概ね一致した.

図-5 に真尾における土石流流下後の流路幅と河床高 の縦断方向変化を示す.現地調査の結果, x<580m では 侵食傾向, x>580m では侵食後に堆積が生じていた.計 算結果では,上流域での侵食は過小評価となったもの の下流域での堆積は現地状況が再現された.流路幅に ついては, x<900m では計算値が現地調査結果と概ね一

表-5 計算条件

初期流路幅	$B=8.04 \times A^{0.37}$
時間刻み幅	∆t=0.1sec
空間刻み幅	∆x=25m
最密充填濃度	C*=0.65
平均粒径	d=0.3m
流速係数	ф=4
河床堆積層厚	2m

図-5 真尾における土石流流下後の縦断方向変化

渓流名	真尾	石原A	石原B	石原C	八幡谷
崩壊条件	(C ₀ =0.2, T=30sec)	(Co=0.2, T=30sec)	(Co=0.2, T=30sec)	(C ₀ =0.2, T=60sec)	(C ₀ =0.2, T=60sec)
崩壊土砂量(m ³)	2,300	2,450	1,650	1,300	4,950
側岸侵食土砂量(m ³)	13,300	16,450	16,200	8,900	23,000
河床侵食土砂量(m ³)	-11,200	-6,850	-9,050	-4,650	-19,950
流出土砂量(m ³)	4,100	11,400	9,050	5,500	6,800

表-6 各渓流における土砂収支

致した.表-6 に各渓流における土砂収支を示す.ただ し、4パターンの崩壊条件のうち、現地の河道状況と比 較し、最も適当と考えられるものを採用した.表-6 に おいて、河床侵食土砂量は全渓流において負値となり、 堆積が卓越する結果となった.また側岸侵食により生 産される土砂量が崩壊土砂量より大きく、流出土砂量 の結果に大きな影響を及ぼすことがわかった.

2-4. 土石流の比流砂量とダムの比堆砂量との比較

図-6 は、前項により得た土石流の比流砂量と山口 県・九州北部に位置するダムの比堆砂量を比較したも のである.ただし、剣川については、アジア航測㈱が 航空測量データより算定した流出土砂量を用いた.ダ ムの比堆砂量 q_{sd} (m³/km²/year)は、ダム内に流送されて きた土砂量を年平均化し流域面積 A(km²) で除したもの であり,比流砂量 q_s(m³/km²/levent)は1回の土石流によ り流出した土砂量を流域面積 A(km²)で除したものであ る.計算により得た土石流の比流砂量は、ダムの比堆 砂量に比べて大きく、単位流域面積でみると、年間の ダム堆砂量を上回る土砂が1度の土石流により流出し たことがわかる.また,時間スケールを1時間に揃え, 土石流発生渓流相当の流域面積で比較すると、計算結 果との差は概ね $10^3 \sim 10^4$ となる. 比堆砂量は, 掃流砂, 浮遊砂、ウォッシュロードの移動形態で土砂が貯水池 に流入した結果であり,計算結果との差は,土砂移動 形態の違いを表すと推測される.また, 芦田ら⁵によれ ば、ダムの比堆砂量は q_{sd} ∝ A^{-0.7}の関係にあり、図-6 か ら,今回発生した土石流の比流砂量についても同様の 関係が成り立つと推測される.

3. 結論

本研究では,2009 年 7 月 21 日に防府市で発生した土 石流を対象に流出土砂量を評価した.計算から得た流 出土砂量をダムの堆砂量と単位流域面積当たりで比較 した結果,1度の土石流の流出土砂量の方が大きくなる 結果を得た.また,土石流の比流砂量が流域面積の関 数で表されることが示唆された.

謝辞:本研究に際して,山口県河川課,国土交通省山 ロ河川国道事務所より資料をいただいた.また,アジ ア航測㈱の小川紀一朗氏には航空測量結果について貴 重な資料をいただいた.シミュレーションは,名古屋 大学高岡広樹氏の助力を受けた.また本研究は,一部, 科学研究費(代表,山口大学 羽田野袈裟義教授)の補 助のもとに実施した.ここに記して謝意を表します.

参考文献

- アジア航測㈱: 平成21年7月中国・九州北部豪雨災 害,2009.
- 古川浩平,海堀正博,久保田哲也,地頭園隆,権田 豊,杉原成満,林真一郎,池田暁彦,荒木義則,柏 原佳明:2009年7月21日山口県防府市での土砂災害 緊急調査報告,砂防学会誌,Vol.62,No.3,p.62~ 73,2009.
- 3) 高岡広樹:高濃度流れによる河道侵食と土砂流出に 関する研究,九州大学博士論文,2004.
- 4) 笠井美青:嘉瀬川ダムに流入する河川およびダムへの流入土砂について、平成9~11 年度建設省・土木 学会共同研究報告書(代表、九州大学 橋本晴行).
- 5) 芦田和男,奥村武信:ダム堆砂に関する研究,京都 大学防災研究所年報,第17号B,1974.