1. はじめに

ガイド波は,長距離を少ない減衰量で伝播させることが できるという非破壊検査上の利点を持つ一方,分散性のあ る複数のモードが混在するために複雑な伝播形態とり波形 解釈が難しいことが問題となる.そのため,観測波形を処 理してきず画像を合成し,分かり易く表示する技術があれ ば大変有用である.本研究は,そのための基礎技術として, 時間反転収束のアイデアに基づく,ガイド波を使った表面 き裂の画像化手法の提案を行うものである.具体的には, 数値シミュレーションにより作成したガイド波の波形デー タを,時間反転法によって画像化することでき裂位置を同 定する方法を示す.なお,簡単のためここでは2次元問題 を考え,弾性波のモードとしては面外波(スカラー波)を 対象とした議論を行う.

2. 問題設定

図1に、本研究で考えるガイド波を使った探傷試験のイ メージを示す.検査対象の薄板は、均質かつ等方な線形弾 性体とし、きずとして、大きさ、形状、位置が未知の鉛直 な表面き裂が含まれるものとする.弾性波の送信は板表面 に設置された超音波トランスデューサ(探触子)によって行 われ、送受する波動は紙面奥行方向に振動する面外波(SH 波)であるものとする.なお、送受信点はいずれも板の上 面で、欠陥に対して左側に限定され、計測量としては、波 動場の速度振幅が時間と計測点位置の関数として得られる ものとする.ただし、板の長さは、波長や板厚に比べて大 きく、ガイド波を発生させるために十分な長さをもつもの とする.ここでは、以上のような状況設定において、観測 された板表面の速度応答波形からき裂位置を同定する問題 を考える.

3. 数値シミュレーション

ここでは逆解析のため 2 次元数値シミュレーションに より作成した波形を用いる.数値シミュレーションには有 限差分法により,図 2 に示したモデルを用いて行った.入 射波の励起は,板表面に加えられた面外方向表面力による ものとし,その分布幅は図に示したように 6mm とし,時 間変化は周期 2 μ sec の余弦波一波によって与えている.横 波実体波の伝播速度 c_T は $c_T = 3,000$ m/sec としている ためこのことは波長が約 6mm で,板厚 5mm と同程度と なっていることを意味する.なお,入射波を励起すべく設 定された表面力が作用する部分を除き,境界部ではき裂 面を含め表面力ゼロの自由境界として扱う.また,初期条 件は変位,速度とも全領域でゼロとした.なお,無限板に

岡山大学 環境学研究科 学生会員 〇仁科 直也 岡山大学 環境学研究科 正会員 木本 和志

おける波動場を計算するために,計算領域の左右端部には PML(perfectly matched layer)領域を設けているが、モデ ル寸法等を示した図2には、図が煩雑になることを避ける ためにその大きさ等は示していない.

以上の条件で行った数値シミュレーションの結果を図?? および図4に示す.前者の図は,板内部の速度場の絶対値 を示したスナップショットであり,時間の経過と入射波の 伝播に伴いガイド波が形成される様子が上の二つのスナッ プショットに,き裂で発生した散乱波が入射点側に戻って いく様子が下の二つに現れている様子がわかる.なお,こ の図では白の実線でき裂位置を示している.一方,図4は 板上側表面の $x_1 = 40 \sim 80$ mmにおける観測波形の時間 変化を示したものであり,横軸が時間,縦軸が観測点座標 を表している.このような図は,超音波探傷試験の用語で はBスキャン,地震学でいえば走時曲線に相当する.この 図より,板上下面での多重反射により,パルス的な波を入 射した場合にも長時間の応答が続く結果になり,波形デー タを直接解釈することで,き裂がき裂位置を判定すること は困難であることがわかる.

4. 画像化手法

波形データの可視化には,時間反転収束 (time reversal focusing)の方法を用いた.この方法は,入射波変位

図-3 板内部に発生する速度場のスナップショット.

図-4 板の上表面 40 ≤ x₁ ≤ 80mm の範囲で観測される速度 波形.

 $u^{in}(x,t)$ と散乱波変位 $u^{sc}(x,t)$ の空間的な相関をとって, 全観測時間でスタックする方法である.そのような計算は, 周波数領域では次のような式によって行うことができる.

$$I(\boldsymbol{x}) = \int_{-\infty}^{+\infty} \bar{u}^{in}(\boldsymbol{x},\omega) \left(\bar{u}^{sc}(\boldsymbol{x},\omega)\right)^* d\omega \qquad (1)$$

ここに, I(x) は位置 x の画素における画像の輝度を, (\cdot) は時間に関するフーリエ変換を, ω は角周波数を, $(\cdot)*$ は 複素共役を意味する.なお,観測データを使い,式(1)の 計算を行う際には二つの問題がある.一つには,観測波形 は入射波と散乱波が混在した形でしか得られないため,両 者をいかに分離するかという点が問題となる.また,観測 データが 通常,板の表面でしか得られず,内部の場を直 接計測することができないことも問題である.これらの点 に関して本研究では,板内部の変位場が次のようにガイド 波の重ね合わせによって表現されることに着目し,観測波 形を進行方向別のモードに分解することで対処した.

$$u(\boldsymbol{x},t) = \sum_{n=0}^{\infty} \sum_{\alpha=+,-} A_n^{\alpha}(\omega) f_n(x_2) \exp\left(ik_n(\omega)x_1 - i\omega t\right)$$
(2)

ここに,nはモード次数を, $f_n(x_2)$ はn次モードの正規化 された振幅の鉛直方向分布を, k_n は波数を+,-は進行方 向を意味し,各モードの周波数スペクトル $A_n^{\pm}(\omega)$ 以外は, 面外波の場合波数-周波数の関係を含め全て理論的に決定 できるものである.以上を踏まえれば,観測された板表面 の応答波形を波数-周波数領域へフーリエ変換して $A_n^{\pm}(\omega)$ を決定し,理論的に与えられる振幅分布 $f_n(x_2)$ を用いて 外挿することで板内部の変位場が得られることがわかる. その結果から,右方向進行波が入射波に,左方向進行波が 散乱波に相当するものとして式(1)に用いることで像I(x)の計算を行った.

5. 画像化結果

以上の方法で,シミュレーション波形から計算を行った 画像データI(x)を図5に示す.この図は $90 \le x \le 170$ mm の範囲で計算したI(x)を示したもので,赤の部分が大きな 画素値をもつ領域,白の実線はシミュレーションモデルに設 定したき裂位置を示している.図に示したように,き裂は 板の上面および下面にあるそれぞれの場合について画像化 結果を示しており,共にき裂長さは板厚の半分(h=2.5mm) としている.これらの結果を見ると,いずれのケースもき 裂近傍で大きな画素値を持つ領域が見られ,水平方向位置 だけでなく,き裂が上下どちらの側に存在するかについて も精度よく同定されていることが分かる.なお,ここに示 した結果は,一見互いに上下反転させただけのように見え るが,シミュレーション条件はき裂位置以外は送受信位置 も含めて同一である. そのため,き裂が上面にある場合は 板の同じ側から,き裂が下面側にある場合にはき裂に対し て板の逆面から探傷を行っていることになる.従って,画 像化結果がほぼ上下対象となることは,送受信パターンの 対称性に起因する自明な帰結ではなく,ガイド波が形成さ れた結果,板上下のどちら側の面からでも同じように波動 場の情報を得ることができる状態が発生しているという重 要な結果を示唆していると考えられる.なお,式(2)に含 まれる無限和は,送信波の周波数帯域に含まれる伝播モー ドのみが含まれる次数で打ち切って評価を行っており,具 体的には $n = 0 \sim 2$ 次までの3つのモードを考慮している. ただし、より高次のモードまで含まれることを想定して計 算を行うことは可能で,想定したモードが含まれない場合 には画像化結果は何の変化もなく,像合成のための計算時 間が考慮したモード数に応じて増加するだけの影響を与え る.このことは,実際には観測されないモードの存在を仮 定して画像化を行っても,結果に悪影響が及ばないことを 意味し,実際の検査では散乱波を構成するガイド波モード の組成が事前には分からないことを踏まえれば,本手法の 実用上の利点であると言える.

図-5 鉛直表面き裂の画像化結果 (上が,板上面,下が板下面の き裂.白の実線はき裂位置を示す.

6. まとめ

本研究では,シミュレーション波形を用いて,ガイド波 によるき裂の画像化方法について検討を行った.その結果, ここで用いた時間反転収束の方法によれば,表面での計測 結果から,き裂位置と大まかな深さに関する情報が得られ る可能性があることがわかった.今後は,送受信条件の最 適化について検討するとともに,面内波を使った探傷およ びきずの画像化に本手法を応用することが課題となると考 えられる.