溶融スラグを細骨材とするコンクリートはり部材の力学的特性

山口大学大学院理工学研究科社会建設工学専攻 学生会員 ○木下彰範

山口大学 正会員 高海克彦

山口大学大学院理工学研究科社会建設工学専攻 学生会員 石倉雄治

1. はじめに

コンクリート用骨材として使われている 海砂の枯渇により、その代替材としてごみ 溶融スラグ(以下スラグと略記)が注目さ れている.しかし、コンクリート構造物へ の利用は未だに少ないのが現状である.そ の原因として、スラグをコンクリート用骨 材として使用した場合の材料的評価は行わ れているが、スラグを鉄筋コンクリート構 造に適用した構造的評価があまり行われて いない点が挙げられる.そこで、本研究で は RC はり部材にスラグを使用し、その力 学的性質(耐荷力・ひずみ)の評価を行っ た.

2. はり試験概要

2.1 配合表とコンクリート特性

本研究におけるコンクリートの配合表を,表-1に示す.名称のNはスラグ置換率0%,SGはスラグ置換率100%,SGKはスラグ置換率100%でセメントを15%高炉セメントで置換したものである.本研究では,各配合を2本ずつ打設した.養生期間は28日間である.この配合によるコンクリート特性を調べるために,JISに従いスランプ試験・空気量試験・ブリーディング試験・強度試験を行った.

2.2 はり供試体

図-1 に本研究で使用した供試体寸法および支点,載荷位置を示す.各供試体には,主鉄筋に D10 異形鉄筋を 3 本ずつ用い,主

表-1 配合表

W/C	名称	単位量(kg/m³)								
(%)	かり	C	C1(高炉)	W	S	S1(スラグ)	Gl	G2	Α	
60	N	292	0	175	735	0	541.5	541.5	3.10	
55	SG	318	0	175	0	743	541.5	541.5	4.76	
55	SGK	270	45.9	175	0	743	541.5	541.5	4.76	

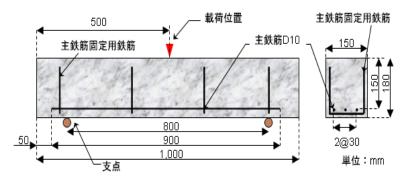


図-1 供試体寸法および支点, 載荷位置

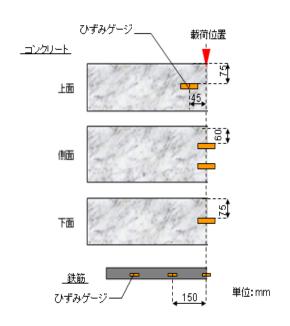


図-2 ひずみゲージ貼付位置

鉄筋固定用鉄筋を 280mm ごとに 4本用いた. ひずみゲージ貼付位置を**図**-2 に示す. 鉄筋のひずみゲージは、各供試体の 3 本の主鉄筋のうち、中央に位置する主鉄筋 1 本にのみ貼付し、主鉄筋の片側半分のひずみのみを測定するようにした.

2.3 載荷方法

載荷は、1点集中荷重の変位制御で行った. ひずみの計測は荷重 5.0kN ごとに行い、はりが降伏した後は

3. 実験結果および考察

3.1 コンクリート特性

表-2 にコンクリート特性を示す. スランプ値はスラグを使用すること によって大きくなっている.これは, スラグ表面がガラス質で滑らかなた め、水分移動が容易になったことに 起因する. また, ブリーディング率 もスラグの使用により増加している. これは, スラグの密度が海砂の密度 よりも大きいため、水分が表面に浮 上しやすくなったことに起因してい る. 強度においては、スラグを使用 しても、強度の減少は小さかった. この強度の減少は、スラグ表面がガ ラス質で滑らかなため、ペースト部 分の付着力が小さくなったためと考 えられる.

3.2 はり試験

表-3 に各梁の耐荷力を、図-3 に全ての供試体における荷重と変位の関係を示す。全ての配合で同じような変化が見られ、荷重の増加とともに変位も増加した。30~40kN付近でひび割れが発生した後は、鉄筋が引張力を受け持ち、60kN付近で引張鉄筋が降伏した。鉄筋降伏後は、コンクリート圧縮ひずみが増加してい

表-2 コンクリート特性

供試体名	3	スランプ値 (cm)	空気量 (%)	ブリーディング率 (%)	圧縮強度 (N/mm²)	割裂引張強度 (N/mm²)	
N1		12.5	2.6	10.0	33.4	3.37	
N2		12.3	2.0	10.0	33.4	3.37	
SG1		13.5	3.1	15.1	28.8	2.57	
SG2		13.3	3.1	15.1	26.6	2.37	
SGK1		11.6	3.0	26.4	32.2	2.77	
SGK2							

表-3 はりの耐荷力

供試体名	ひび割れ発	生荷重(kN)	はりの降伏曲げ耐力(kN)		
供訊体石	計算値	実験値	計算値	実験値	
N1	9.8	42.1	38.5	59.3	
N2	9.8	39.2	38.3	58.3	
SG1	8.9	34.3	20.1	58.9	
SG2	8.9	39.2	38.1	60.9	
SGK1	9.6	37.2	38.4	58.7	
SGK2	7.0	29.4	30.4	58.8	

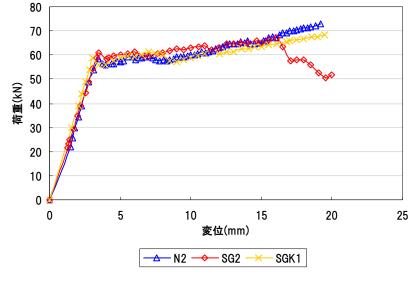


図-3 荷重-変位関係

き、やがて曲げ破壊が発生した。曲げ破壊後は梁に作用する荷重はほとんど増加しないが、急激に耐力を失うこともなく、鉄筋が伸びることによって変位だけが増加した。SG2 にいたっては、変位 15mm 付近から荷重が大きく抜けていったが、これははり部材がせん断破壊を受けたことに起因する。また、降伏荷重は全ての供試体でほぼ同等であるから、スラグの置換率による梁の変形性状への影響はないと考えられる。

4. まとめ

本研究で得られた結果をまとめると以下の通りである.

- (1) スラグの使用により、スランプ値およびブリーディング量を増大させる.特に、ブリーディング量に 与える影響は著しく大きい。
- (2) スラグを使用すると、コンクリートの強度は若干低下するが、圧縮強度は約86%、割裂引張強度は約76%の強度を保つことができる.
- (3) RC 梁部材の耐荷力およびひずみに対するスラグの影響は小さい.