藤井堅	正会員	広島大学大学院	山口詩織	学生会員	広島大学大学院
高木健	正会員	広島大学大学院	石井抱	正会員	広島大学大学院
山本正司	正会員	交通省中国技術事務所	国土著		
藤井真人	正会員	サーチコンサルタント	(株)計測リ		

1.はじめに

近年,経年した老朽化構造物が急増し,その維持管 理の重要性認識が高まっている.一方,複合構造物分 野においては種々の複合・合成構造形式が開発されて おり,その中で鋼開断面箱桁とRCあるいはPCフラ ンジを合成した合成断面箱桁が注目され多く用いられ ている.今後,この種の構造形式を採用した橋梁の維 持管理が重要になると考えられる.そこで,今回は維 持管理における基礎資料を提供することを目的に,神 戸川拡幅に伴い,昭和39年に竣工され約40年経過し た合成断面箱桁橋(神戸橋)を対象として現状調査な らびに現地載荷実験を行い,経年した合成箱桁橋梁の 残存性能,力学挙動を調べた.また,対応して有限要 素解析も行った.

2.神戸橋(旧橋)の概要

本橋梁は,昭和 39年に供用開始,神戸川の拡幅に伴って平成20年に撤去することとなった5径間単純複合 箱桁橋である.橋長は258mで,各橋桁は,床版がRC, ウェブおよび下フランジが溶接とリベット併用で組み 立てられた開断面箱桁で,RC床版と鋼桁が合成され た逆台形断面合成箱桁である.幅員8m(2車線),支 間長50.8mで,床版厚190mm,ハンチを入れた中央部 では355mmとなっているRC床版と鋼上フランジは, ブロックジベルで一体化されており,幅員の中央には 縦桁が設けられている.橋梁一般図と橋梁の写真を図 -1 および図-2 に示す.

3.静的載荷実験

荷重条件は,図-3(a)および(b)に示す Case-1 および Case-4の2ケースである.荷重は,表-1に示すトラッ クの輪荷重を載荷した.

| 碧

図-1

新面図 S=1:50

4.静的載荷実験の解析

要素分割図と要素・節点数を図-4 および表-2 に示す. 図-4 に示すように,橋梁全体をシェル要素およびはり 要素で表現した.RC 床版,鋼主桁,縦桁および補剛 材,リブは,4 節点6自由度の isoparametric シェル要 素を用いて,縦桁を支える対傾構は,はり要素を用い た.シェル要素は概ね1辺が300mm になるように分 割した.

RC 床版と鋼桁上フランジは,ジベルにより結合されている.断面は完全合成を仮定した.また,床版の中央面位置を実際と対応させるために, RC 床版と鋼 上フランジの間はシェル要素(ダミー要素)で結合した.また,RC 床版厚については,ハンチ部を考慮して 300mm とし,RC 床版内の鉄筋は無視した.

5.解析結果と実験結果との比較

(1)桁中央断面下フランジのたわみ

桁中央断面下フランジのたわみの解析値と実験値 の比較を表-3 に示す.表より,中央断面のたわみは, 実験値のほうが小さめである.これは,床版内の鉄筋 を無視したことが考えられる.

(2)桁中央断面の曲げひずみ分布

図-5(a)および(b)に,それぞれ Case-1 および Case-4 の桁中央断面における曲げひずみ分布を示す.特に, 鋼の断面におけるひずみ分布も,実験値は解析値より も小さいのがわかる.これは,図-4 に示すように,床 版と鋼上フランジ間の応力伝達がダミー要素を介して 行われるため,鋼上フランジ面で局部的に応力が作用 することが考えられる.

床版について, Case-1 では, 桁中央(計測位置付近) に集中荷重が作用しているため, 床版に局部的に曲げ 応力が発生すると考えられる.よって, 床版上下面で は, ひずみは等しくならない.対して, Case-4 では, 集中荷重が桁中央から離れるため, 桁中央ではほぼ純 曲げ状態となり, 局部的な曲げ応力は小さく, 床版両 表面のひずみはほぼ等しくなる.

6.固有振動数

静的載荷実験と同時に,一次固有振動数を求めるた めに,桁中央においてトラックの後輪を段差から落下 させる衝撃載荷実験も行った.また,桁の代表的な断 面諸量を求め,はり要素を用いて一次固有振動数を求 めた.このとき,現場実験の状況を再現するために桁 中央のはり要素にトラック(20tf)分の質量を付加し た.図-6に一次固有振動モードを示し,表-4に,実験 値と解析値の一次固有振動数の比較を示す.表から, 両者の固有振動数は概ね一致しており,固有振動数が 異なるほどの大きな損傷は無いと判断してよいと考え られる.

7.結論

現地載荷実験の結果から,本橋梁の合成箱桁断面は 完全合成を維持しており,ジベルによる結合は健全で あった.また,目視によっても,本橋梁の腐食や大き な損傷は見られず,健全であった.

40 年経年した開断面合成箱桁は,濃度の高い飛来塩 分に曝されるなどの環境条件が極端に悪くなく,大き な外傷を伴わなければ,概ね健全性を維持できると考 えられる.

参考文献

 街道浩,渡辺滉,橘吉宏,松井繁之,栗田章光:鋼・コンクリ ート合成床版を適用したプレストレスしない連続合成げたの 中間支点部の静的載荷試験,構造工学論文 集,Vol.49A,pp1115-1126.