大変形を受けた砂質土のせん断強度に及ぼすせん断速度の影響

山口大学大学院	学	○藤井公博	
山口大学大学院	Æ	鈴木素之	山本哲朗
㈱国際開発コン	サルク	タンツ 非	甲斐康広

1. はじめに 新潟県中越地震では,砂質土 斜面で地すべりが多発した.地震により大 変形を受けた砂質土の定常状態せん断強さ は,斜面の安定性評価において重要である. しかしながら,地震時砂質土斜面における

砂質土の強度特性は未解明である.本研究では,特に甚大 な被害を受けた旧山古志村(現長岡市)の寺野,東竹沢地 区の地すべり地より採取した試料を用いて圧密・定圧・定 速リングせん断試験を行った.今回得られた試験結果を粘 性土や豊浦砂のデータと比較し,せん断強さに及ぼすせん 断速度の影響を検討した.

2. リングせん断試験 a) 試料の物理特性 リングせん断試 験に用いた試料を寺野,東竹沢Aと命名した.両試料とと もに比較試料の豊浦砂の物理特性を表-1 に示す.砂質土 は 0.85mm ふるいで粒度調整した試料である. また,表-2 にカオリン,島尻泥岩,油谷 A~D の物理特性を示す.b) 試験条件 試験は,乾燥砂を用いて行った.寺野,東竹沢 地区でのすべり面の位置は、約26,28m で発生したと考え られるため, 垂直応力を 294~490kPa, 地震時の滑動速度 は高速域にあると考えられるため、せん断速度 0.1~ 20mm/min,供試体の初期密度は原位置を考慮して初期相対 密度を 90% とした. c) 試験手順 ①供試体の鉛直方向の乾 燥密度が一定になるように3層に分け、各層一定の力で突 固めて作成し、仕上げに供試体上面を均した。 ②供試体作 成後,載荷時間を 60min に設定し,所定の $\sigma_{\rm C}$ で圧密を行っ た. ③圧密終了後,上・下部リングの隙間 d, せん断速度 δ を設定し、定圧定速せん断を実施した.

3. 試験結果と考察 a)地すべり乾燥砂の強度線 図-1 に, 寺野,東竹沢 A のピーク時,定常状態強度と垂直応力の関係 を示す. 定常状態とは応力比 τ/σ_N がピークから低下し,変化 しなくなった状態と定義した. 図には,異なるせん断速度時 のデータを示している. これより,ピーク時および定常状態 強度に多少なりの差があることがわかる. 東竹沢 A の場合, ピーク時,定常状態時ともにせん断強度は寺野のそれよりも 高い値が得られた. また,寺野,東竹沢 A ともに粘着力 c は ゼロであった. これは乾燥砂のためと考えらる.

表-1 砂質土の物理特性

封制友	ρ_s	D_{max}	D 50	Uc	Uc'	F_{sand}	F silt	F clay	F_{C}
P=\1-1-1_L	(g/cm^3)	(mm)	(mm)	00		(%)	(%)	(%)	(%)
寺野	2.661	0.85	0.160	4.6	2.3	86.5	8.0	5.5	13.5
東竹沢 A	2.633	0.85	0.120	18.1	3.1	65.7	26.4	7.9	34.3
宇部まさ土	2.583	0.85	0.220	86.2	3.5	68.2	18.3	13.5	31.8
豊浦砂	2.639	0.85	0.150	2.1	1.0	89.8	4.6	5.6	10.2

表-2 粘性土の物理特性						
訪料夕	ρ_s	w_L	w_p	I	F_{clay}	4
#V11-12	(g/cm^3)	(%)	(%)	1 p	(%)	Л
カオリン	2.618	62.0	40.2	21.8	35.3	2.00
島尻泥岩	2.586	91.4	30.0	61.4	55.5	1.45
油谷A	2.606	89.0	35.9	53.1	87.0	0.67
油谷B	2.600	43.3	23.4	19.9	32.0	0.80
油谷C	2.500	49.0	20.4	28.6	34.5	1.04
油谷D	2.554	44.7	17.8	26.9	47.3	0.70

b) 粘土と砂のせん断強度に及ぼすせん断速 度の影響 図-2 に豊浦砂のピーク時およ び定常状態の応力比(τ/σ_N)_p, (τ/σ_N)_{ss}と対 数表示のせん断変位角速度θの関係を示す. せん断時の垂直応力は 196kPa, Dr0=90%で 設定されている.豊浦砂の場合, $(\tau / \sigma_N)_p$ は *θ*の増加に伴い減少傾向が見られた. また, $(\tau / \sigma_N)_{ss}$ も θ の増加に対して若干の減少傾向 が見られた. 図-3 に寺野, 東竹沢 A のピー ク時および定常状態の内部摩擦角 øn, øss と 対数表示のθの関係を示す. 寺野のゆ は log の 増加に伴い若干の減少傾向が見ら れた.しかし、 ϕ_{ss} は log θ の変化に関わら ずほぼ一定であった. 東竹沢 A の場合, ϕ_{n}, ϕ_{ss} ともに $\log \theta$ が変化してもほぼ一定の ままであった.豊浦砂の場合,寺野,東竹 沢Aの条件に比べて試験時拘束圧が小さく, 正のダイレイタンシーによって供試体が膨 張したため, ピーク強度から定常状態強度 に大きく減少傾向が見られたと考えられる. また、せん断速度の増加に伴い正のダイレ イタンシーが発揮され, せん断強度に減少 傾向が見られたと考えられる.図-4に様々 な粘性土の残留状態の応力比 $(\tau/\sigma_N)_r$ を $\delta = 0.2$ mm/min のときの応力比(τ_r / σ_N)_{0.02} で 正規化したものと対数表示のδの関係につ いて整理したものを示す.粘性土の場合, logδの変化に応じて正規化した応力比が増

図-5 様々な土の大変形時の強度に及ぼすせん断速度の影響

加・減少・一定の傾向が見られ, せん断速度の影響を受けていることがわかる. 図-5 に既往の研究データから引用した(r/\sigma_N)_r, (r/σ_N)_{ss} と,本研究で得られた砂質土の(r/σ_N)_{ss} を logδの関係で整理した. 粘性土と砂質 土を比較すると,粘性土よりも砂質土のほうが高い強度を有している.しかし,せん断速度が高速域の場合, 砂質土よりも高い強度を示す粘性土もある.粘性土の場合,せん断に伴う過剰間隙水圧の発生によるせん断 面上の有効垂直応力を変化が,残留強度がせん断速度の影響を受ける一つの要因であると指摘されている. 本研究および既往の研究での砂質土は乾燥状態で試験を行っているため,過剰間隙水圧の影響はないと考え られる.現時点では,間隙水以外の要因,土粒子および土構造の変化が速度依存性の原因として考えている. 4. **まとめ**本研究で得られた知見を以下に記す.①密詰めの寺野の場合,定常状態強度にせん断速度による 影響は見られなかった.②密詰めの東竹沢 A の場合,ピーク時,定常状態強度ともにせん断速度による影響 は見られなかった.③東竹沢 A のせん断強度は,せん断速度によらず寺野よりも高い値が得られた.④密詰 めの乾燥砂の定常状態強度には,せん断速度による影響はほとんど見られなかった.⑤試料によっては,せん断速度の影響のため,砂質土よりも高いせん断強度を示す粘性土がある.

【謝辞】本研究は科研費・基礎研究(C)(課題番号:20560464,代表者:鈴木素之)の助成を受けたものである.ここに記して,関係各位に謝意を表す次第である.