広島工業大学大学院工学系研究科 学生会員	、 〇市川 勇人
----------------------	------------

復建調査設計株式会社	正会員	清水	豊
------------	-----	----	---

- 復建調査設計株式会社フェロー会員 吉浪 康行
 - 清水建設株式会社 フェロー会員 鈴木 誠
 - 広島工業大学工学部 フェロー会員 中山 隆弘

1. 序論

豪雨時における河川堤防の浸透に対するすべり破 壊の安全性については,現行設計法では土質定数等 のパラメータを確定値として扱い,浸透流解析と円 弧すべり法によって安全率で評価されている.しか し,外力や土質定数などのパラメータは,本来確率 変数として取り扱われるべきものであり,また堤体 内地下水流の影響も確率論的に評価する必要がある.

そこで、本研究では堤体盛土の地盤物性値の不確 実性を定量的に評価し、局所破壊とすべり円弧を仮 定した全体破壊に対する安全性余裕を、確率有限要 素法を用いて、破壊確率や信頼性指標で評価する一 方法を提案する.

2. 確率有限要素法

有限要素解析が地盤工学分野において用いられる 場合,多くが材料特性のもつ不確実性を無視して確 定値として計算している.しかし,安定問題などで は材料強度などの不確実性が解析結果に大きな影響 を与えることから,不確実性を考慮できる確率有限 要素法が開発された.この方法によれば,破壊に対 する性能関数を定めることにより,各要素の局所破 壊確率と単一すべり面を想定した場合の全体破壊確 率を求めることができる.

2.1 局所破壊

要素 i のせん断破壊に関する性能関数 g_iについて は、同一要素内ではすべり面上の垂直応力 σ_i が変化 しないと仮定すれば、内部摩擦角を ϕ_i として、クー ロンの破壊基準により Ep. (1)で定義できる.

$$g_i = \tau_{fi} - \tau_i = c_i + \sigma_i \tan \phi_i - \tau_i \tag{1}$$

式中, τ_{fi} は破壊面のせん断抵抗(kN/m²), τ_i はすべり 面の作用せん断力 (kN/m²), c_i は粘着力(kN/m²)であ る. このとき, 要素 i の局所破壊に対する信頼性指標 は式(2)で与えられる.

$$\boldsymbol{\beta}_i = E[\boldsymbol{g}_i] / (Var[\boldsymbol{g}_i])^{1/2}$$
⁽²⁾

式中, E[g_i]は g_i の平均値, Var[g_i]は g_i の分散である.

さらに,破壊確率 P_{fi}は Ep. (3)で表される.

$$P_{fi} = \boldsymbol{\Phi}\left(-\boldsymbol{\beta}_i\right) \tag{3}$$

ここに、 Φ は標準正規確率分布関数である.

2.2 全体破壊

まず、単一すべり面に対する堤体の全体破壊に対 する性能関数 G を局所破壊に対する性能関数 gi を用 いて Ep. (4)で定義する. すなわち,想定した単一す べり面に対する全体破壊の性能関数 G は, Ep. (4)に 示すように、すべり面が存在する場合の各要素の性 能関数 gi と各要素のすべり面の長さ $\Delta \ell_i$ の積をすべ り面全体で加算することで表される.

$$G = \sum g_i \Delta \ell_i \tag{4}$$

Fig. 1 Slip surface passing the i-th element.

このとき信頼性指標βはEp.(5)によって得られる.

$$\boldsymbol{\beta} = E[G]/(Var[G])^{1/2}$$
⁽⁵⁾

さらに,破壊確率 P_f は信頼性指標 β から Ep. (6) で表される.

$$P_f = \Phi\left(-\beta\right) \tag{6}$$

3. 地下水流の影響¹⁾

浸透流を受ける堤体内の応力は,有効応力と浸透 流による土に働く応力(浸透力)とに大別されるが, 浸透力は要素物体力として作用させる¹⁾.物体力は, その点における動水勾配に水の単位体積重量 γ w を 乗じた値として与えられる. すなわち, 座標方向成 分で表示すれば, Ep. (7)のようになる.

$$X = -\gamma_{w} \frac{\partial H}{\partial x}, Y = -\gamma_{w} \frac{\partial H}{\partial y}$$
(7)

有限要素法で求める場合の任意三角形要素内では, Ep. (8)のように表される.

$$X = -\frac{\gamma_{w}}{2\Delta} \{ (y_{i} - y_{k}) H_{i} + (y_{k} - y_{i}) H_{j} + (y_{i} - y_{j}) H_{k} \} \}$$

$$Y = -\frac{\gamma_{w}}{2\Delta} \{ (x_{k} - x_{i}) H_{i} + (x_{i} - x_{k}) H_{j} + (x_{j} - x_{i}) H_{k} \}$$
(8)

 Δ : 三角形要素の面積, x_i , y_i : その要素の i 節点の 座標, x_i , y_i 等も同様, H_i , H_k : 三節点の水頭値

4. 解析概要及び結果

4.1 解析概要

解析に用いた堤防モデルは Fig.2 の通りである. 有限要素法の要素は三角形定ひずみ要素であり,要 素数は 2475 である.変動係数については既往の文献 ²⁾により Table 1 のように設定した.

Table 1Coefficient of variation.

	Coefficient of variation
Unit weight (γ)	0.02~0.08
Cohesion (c)	0.2~0.4
Internal friction angle (φ)	0.1~0.2

また,浸透流解析に必要な外力条件(降雨、河川 水位)の時刻歴を Fig. 3 に示す.

Fig. 3 External force model.

なお,この外力条件については『河川堤防の構造 検討の手引き』³⁾を参考にして設定した.

4.2 解析結果.

各設計因子が β に及ぼす影響を把握するため, Table 1 に示す各土質定数の変動係数を用いてβの経 時変化を計算した.なお,計算は各土質定数の変動 係数の最大,平均,最小値に対して行い,その他 2 つの土質定数の変動係数は平均値を用いた.

(c) Internal friction angle

Fig. 4 Effects of the coefficients of variations on reliability index.

Fig.4 より本解析モデルの様な地盤の時,単位体積 重量や内部摩擦角が粘着力よりβに与える影響が大 きいことがわかる.

5. 結論

簡易モデルにおいて土質定数の不確実性について 定量的に評価することを示すことができた.しかし, 本研究において浸透流解析に大きな影響を与えると される透水係数の不確実性は無視している. 今後は 透水係数の不確実性についても検討していく必要が ある.

参考文献

- 1) 駒田広也, 金沢紀一: フィルダムの貯水池水位急 降下時の非定常浸透流解析および安定解析, 土 木学会論文集, 240, pp.51-62, 1975.
- 2) 松尾稔: 地盤工学 信頼性設計の理念と実際, 技 報堂, pp.62-71, 1984.
- (財)土技術研究センター:河川堤防の構造検討の
 手引き, JICE 資料第 102002 号, 2002.