「おりがみ」から理想的な構造物への創造

広島大学 正会員 有尾 一郎

1. はじめに

本研究話題は、弾性不安定 (座屈) の一般論 を築かれた Giles との共同研究 "Twist buckling and the foldable cylinder : an exercise in origami", Int. J. of Nonlinear Mechanics, 40(6), 833-843 (2005) の成果の一部からの抜粋 である。

2つの堅固な円筒を隙間をつくって一列に並 べ、それにロール紙を巻き付け固定し、その 両側でねじるとき,円筒周りにセン断が働き, Fig.1に示されるような捩れ座屈パターンが現 れる¹。このとき,その紙面内には曲げも含ま れるが,微小なストレッチも働く張力場が形成 される。しかし,ねじり作用下の円筒シェルの 初期座屈問題(Fig.2)² は等しい部分で曲げと ストレッチのエネルギーが含まれる。終局的な 座屈モードでは,三角形状からなる多面体構造 が織り込まれ,1次近似の後座屈を経たモード 形の結果を得た。この多面体に変態した形態か ら主要なストレッチ抵抗部分となるトラス構造 を構成し,軽量な展開構造物を創造したので, ここに報告する。

2. 全ポテンシャルと線形固有値解析 円筒の臨界座屈と1次近似の後座屈解析は以 下の全ポテンシャル関数に基づく。

$$\mathcal{V} = \mathcal{V}_{\rm b} + \mathcal{V}_{\rm m} + \mathcal{V}_{\rm T} + \mathcal{V}_{\rm c} \tag{1}$$

ここに, それぞれの力学エネルギーは

$$\mathcal{V}_{\rm b} = \frac{Et^3}{24(1-\nu^2)} \int_0^L \int_0^{2\pi R} \left\{ \left(\nabla^2 w \right)^2 + 2(1-\nu) \left[(w_{xy})^2 - w_{xx} w_{yy} \right] \right\} \, \mathrm{d}y \, \mathrm{d}x$$

¹ 特に,この周期凹凸の斜めパターンをクレスリング パターンと呼ばれている。

Fig. 1 円筒の捩れを伴うクレスリングパターン

$$\mathcal{V}_{\mathrm{m}} = \frac{Et}{2} \int_{0}^{L} \int_{0}^{2\pi R} \left\{ \left(\nabla^{2} \phi \right)^{2} + 2(1+\nu) \left[(\phi_{xy})^{2} - \phi_{xx} \phi_{yy} \right] \right\} \, \mathrm{d}y \mathrm{d}x$$
$$\mathcal{V}_{\mathrm{T}} = -\tau t \int_{0}^{L} \int_{0}^{2\pi R} w_{x} w_{y} \, \mathrm{d}y \mathrm{d}x$$
$$\mathcal{V}_{\mathrm{c}} = -Et \int_{0}^{L} \int_{0}^{2\pi R} \phi \left[\nabla^{4} \phi + \rho w_{xx} - (w_{xy})^{2} + w_{xx} w_{yy} \right] \, \mathrm{d}y \mathrm{d}x.$$

から成り,ここに,w(x,y)は半径方向のたわみ を, $\phi(x,y)$ は応力関数である。 \mathcal{V}_{b} は曲げエネ ルギーを, \mathcal{V}_{m} は膜エネルギーを, \mathcal{V}_{T} はトルク による外力エネルギーを, \mathcal{V}_{c} はw表面のガウス 曲率に変換するための応力関数 ϕ がリンクする, von Kármán–Donnell 方程式からの制約条件か ら得られる組合せエネルギーである。Rayleigh-Ritz 法あるいはGalerkin 法では,モード形状は

$$w(x,y) = \sum_{i=1}^{2} A_i f_i(x,y),$$

$$\phi(x,y) = \sum_{i=1}^{2} B_i f_i(x,y) \cdots \cdots \cdots \cdots (2)$$

² Figs.1,2の両者は回転対称・鏡映非対称型の座屈波 形を示す。

(a) 変位 w(L/2, y) とトルクの関係

(b) 座屈波形の等高線図

Fig. 2 Yamakiの捩り作用下の円筒シェル座屈 文献¹⁾から引用. Length L = 22.9 mm, Radius R = 100 mm, thickness t = 0.247 mm, Young's modulus E = 5.55 GPa, Poisson's ratio $\nu = 0.3$.

と表し,ここに,

$$f_1(x,y) = \sin^m \left(\frac{\pi x}{L}\right) \sin \left(\frac{\lambda x}{L} - \frac{ny}{R}\right),$$
$$f_2(x,y) = \sin^2 \left(\frac{\pi x}{L}\right)$$

と仮定する。ここに, A_i , B_i は未知係数である。 べき数 m = 1, 2はツイスト長さの端部が単純 支持と固定支持の 2 つの境界条件に対応する。 最小値 min \mathcal{V} になるように,臨界トルク T^C に 対応する A_1 , B_1 , n,λ を考慮し,線形固有値解 析を行った上で A_2 , B_2 をセットした。

3. 1次オーダーの後座屈解析

式(2)の完全な波形が採用されれば,Figs.1,2 に見られるように,係数A₁,B₁は内側の変形が 外側よりも大きい対称性破れ則のA₂, B₂に影響 する。当日は、典型的な紙供試体に対する後座 屈解析を示す。エネルギー最小化は斜めの角度 γ に関するそれぞれの段階で実行される。後座 屈の発展として紙面の峰と谷ライン間の γ の減 少は,系がフォールディングに順応するように 調整され,さらに斜めに変形するように示す。 峰と谷ラインのこの同じ問題は Yamaki の結果 と比較した。ここに, γ の実験値は,座屈の最 初の段階における線形固有値問題の適用に対し て,それらよりも常時小さい値を示す。そのメ カニズムを完全に適用するために,この適性は Rayleigh-Ritz 近似の制約を持って適用可能であ るけれども,峰と谷ラインは異なった量によっ て回転しなければならないであろう。

Fig.3 新しく創生されたデザイン

4. 座屈からの新しい軽量構造の創造 円筒シェルの初期座屈と後座屈において,適 当な斜めのパラメータλ(γ)と波数nの最小ポ テンシャルエネルギーになるとき,それは必然 的な結果となる。そこで、我々はその円筒シェ ルの捩れ座屈波形形成のメカニズムに基づく, 新しい構造形態の創生法を考案した。例えば、 ストレッチに抵抗する部位となる、峰と谷ライ ンをFig.3に示すように取り出して,トラス構 造の幾何学的に軽量で安定的な新しい構造物の 創造を分析してきた。

参考文献

 Yamaki, N. (1976) Experiments on the postbuckling behaviour of circular cylindrical shells under torsion. Applied Mathematics and Mechanics. Springer-Verlag.

謝辞

日本伝統文化と工学 (座屈)を結びつけた「おりが み工学」の学術的なアイデア (研究の芽) として貴 重な共同研究が行えた事に深く感謝する。