メタンハイドレード固結砂の三軸圧縮特性に及ぼす密度の影響

山口大学 学生会員 長通譲二 山口大学 正会員 兵動正幸 吉本憲正 中田幸男 山口大学 学生会員 米田純

1.はじめに 近年,人々のライフスタイルの変化に伴いエネルギー(化石燃料)の消費が増加している.しかしながら,化石燃料の枯 渇を背景に,次世代資源としてメタンハイドレート(以下 Methane Hydrate:MHと略す)が注目されている.このエネルギー問題を解 決すべく,2001年より MH 資源開発研究コンソーシアム(MH21) が設立された.2003年には南海トラフ周辺において基礎試錐試験 が実施され、MH がこの海域の深海底に豊富に存在していると報告 されている¹⁾.MH 濃集層は,特に水深 1000-1500mの海底から 200-300m程度の深さに砂泥互層状態を成し,Hはその中の砂層の 間隙内に存在していることが調査により明らかにされている¹⁾.図

図-1 MH 固結砂の三相モデル

-1 に, 土粒子, MH, 水の3相モデル(水・MHの総和を全間隙とする)を示す.これまで当研究グループで MHを 含む砂の力学試験²⁾を行ってきたが,砂の密度は一定として MH 飽和率の変化に着目して検討してきた.しかし, 図のように MH 飽和率が一定であっても密度が異なれば,単位体積に含まれる MH の総量が異なる.過去の研究 で MH 自身が水圧,温度に依存することが明らかとなっており MH の量が変われば強度に影響するのではないか と考えられる.そこで,本研究では, MH 固結砂の力学特性に及ぼす密度の影響について検討を行った.

2.実験方法 実験に用いた装置は,深海底と同じ温度と応力条件が再現でき,砂供試体中で MH の生成と分解が 可能な MH 三軸圧縮試験機²⁾である.この装置は,高圧三軸試験機に温度制御の機構を加えたものである.本研 究では,所定の飽和度の砂供試体を三軸室にセットした後,温度と圧力を制御しながら供試体中にメタンガスを 注入し,供試体中の間隙水を MH に置換する方法により砂供試体内に MH を生成した.MH 飽和率は式(1)で定義 され³⁾間隙の体積 V_Vに占める MH の体積 V_{MH}の割合を意味する.目標の MH 飽和率 S_{MH}の供試体作成に際して, 式(2)より初期含水比を算出し²⁾,目標湿潤密度の供試体を作成し,その供試体中の間隙水を MH に置換する.

$$S_{MH} = \frac{V_{MH}}{V_V} \times 100 \tag{1}$$

$$w_{initial} = \frac{(S_{MH}/100) \cdot V_V \cdot \rho_{MH}}{m_s} \cdot A$$
(2)

 $w_{initial}$ (%)は供試体初期含水比, ρ_{MH} はMHの 密度(ρ_{MH} =0.912 g/ cm³), m_s (g)は砂の質量, A(%)はMHに含まれる水の質量百分率であ 表-1 試料の物理的性質

Material	Specific gravity of soil particles	Maximum void ratio	Minimum void ratio	Coefficient of uniformity
	Gs	e _{max}	e _{min}	U _c
Toyoura sand	2.643	0.973	0.635	1.20

る.試験条件は間隙率 40%, 45%, 水圧 5,10,15MPa,温度 1,5,10 ,有効拘束圧 1,2,3MPa, MH飽和度 0%, 30%, 50%の組合せで行った.表-1 に,使用した豊浦砂の物理的性質を示す.

3.実験結果及び考察 間隙率 40%,45%,MH 飽和率 50%の砂供試体に対し,温度 5 ,有効拘束圧 3MPa のも と,水圧 5,10MPa に変化させ,それぞれせん断を行なった.図-2(a)に間隙率 45%,(b)に間隙率 40%の実験結果 をそれぞれ示す.いずれの間隙率においても,水圧の増加に伴い初期剛性,最大軸差応力ともに増加する傾向が 認められる.しかし,増加する応力の割合やピークの値は異なっており,(a),(b)を比べると,(b)は(a)よりも初期 剛性,最大軸差応力,共に高い値を示している.また,(a)においてピークを過ぎると徐々に軟化を示している. (b)は(a)よりも,軟化挙動が顕著に現れていることがわかる.軸ひずみが 50%に近付くと,両者とも MH 固結砂が 砂の残留強度に漸近している.これは, せん断が進み終局状態近付くと, MH に よる粒子間の固結力は弱まり,残留強度 は土粒子が担うところが多くなるため と推察される.次に,水圧15MPa,間隙 率 40,45%,有効拘束圧 3MPa のもと, 温度1,10 と変化させた三軸圧縮試験 結果を図-3 に示す.いずれの間隙率にお いても,温度の低下に伴い初期剛性,最 大軸差応力ともに増加する傾向が認め られる.しかし,増加する応力の割合や ピークの値は異なっており,(a),(b)を比 べると,(b)は(a)よりも初期剛性,最大軸 差応力共に高い値を示している.ここで, 体積変化について注目すると,(a)はすべ ての条件において収縮量は異なってい るが終始収縮を示している.(b)において, 温度が低くなるにつれ収縮挙動の傾向 は低減され膨張挙動へと推移していく 様子が伺える.これは,温度が低下する につれ, MH が堅固になり, 密な状態の 土粒子が MH に乗りあがり,正のダイレ

イタンシーを起こすためと推 察される .これらの実験結果よ り, MH 固結砂は低温, 高圧条 件になるほどより強度が増加 すると分かった.

次に,水圧 5MPa,温度5 間隙率45%一定のもと,有効拘 東圧を1,2,3MPaと変化させ た実験結果から得られた破壊

時の豊浦砂単体と MH 固結砂のモールの応力円を図-4 に示す.豊浦 砂単体の内部摩擦角はφ=26.8°となり, MH 固結砂も同様な大きさ の内部摩擦角となる.これより,この拘束圧の範囲において,内部 摩擦角 φ が一定であると仮定し,MH 固結砂の粘着力として c_H を算 出した.また,豊浦砂単体の粘着力は生じていないことから,MHが 砂中に存在することで c_H が生じたと推察される.

6

τ (MPa)

2

(MPa)

-5

T=5

図-5 c_H'と温度,水圧の関係

図-5にc_H'と温度,水圧の関係を示す.縦軸にc_H',横軸に温度,水圧の二軸をとる.図より,同じ間隙率の試 「験条件において,温度低下によるc_H,増加率と,水圧によるc_H,増加率を比較すると,温度1 あたりの変化 量と,水圧1MPaあたりの変化量が異なることがわかる.次に,図-6に,縦軸に水圧,横軸に温度をとり, MHの安定境界線及び,間隙率40%における温度,水圧条件のc_H'を示す.また,プロットの大小によりc_H'の値の 大小を表現する.図より,MH固結砂はMHの安定境界線から離れるほど高いc_H'を示しており,MH固結砂のc_H'は MHの安定境界の距離と関係があると推察される.このことを踏まえ,MH により発揮されるc_Hが等価となる安定境界線からのT軸方向距離をP軸方 向距離に置き換えられる状態パラメーターLを式(3)のように定義する.こ の関係式を用いることで温度・水圧が,どのような状態であっても,状態 パラメーターLとして,一つのパラメーターで評価することが可能となる.

 $L = a \times L_T + L_P \qquad (MPa) \qquad (3)$

ここで, L_T 及び L_P は,図-6に示す,温度T,水圧Pの状態から,安定境界線 までのT軸方向距離及び,P軸方向距離である.aは,温度変化による c_H 増加率を水圧変化による c_H 増加率に換算するパラメーターとする²⁾.パ ラメーターaの決定方法は,温度変化による c_H 増加率を水圧変化による c_H 増加率で除して算出する.図-5より,間隙率40%において,温度変化 による c_H 増加率は0.0228 (MPa/),水圧変化による c_H 増加率は0.0307 (MPa/MPa)となり,a=0.7(MPa/)が得られた.間隙率45%においても同様 に算出し,a=0.7 (MPa/)が得られた.間隙率40,45%の二つの条件に対 して値が等しくなった.実験結果より得られる範囲に限定して本研究に おけるパラメーターaを,a=0.7(MPa/)とし整理を行った.

次に, $L \ge c_H$ にどのような関係があるか考察するため,図-7 に c_H -*L* 関係を示す.*L*=0MPaの時は,MHが存在できる限界であり,実験が困難 であるためMHが砂に与える c_H を正しく評価できない.そのため安定 境界線上では,MH は分解し,MH による強度発現がないものと仮定し, c_H =0MPa とした.図より,*L*が増加するにつれ c_H は増加し,飽和度 ごとに一義的な関係が得られた.また,全てのMH 飽和度において間隙

図-6 水圧,温度関係に示すLの概念図

率 40%の方が c_H は高い値を示している.先に述べたように,MH 飽和率が一定であっても,単位体積に含まれる MH の量は異なる.密な供試体は間隙が小さくなり,土粒子がより密着するため,少ない MH の量でも粒子間をより効率的に固結する.そのため,間隙の少ない間隙率 40% がより高い粘着力を示したと推察される.

4. まとめ 本研究により,以下のような知見が得られた.

1) MH 固結砂のせん断挙動は, MH 飽和率が同一であっても間隙率が異なると, MH 固結砂に与える温度, 水圧の 影響に差が生じる.間隙率が低いほど,より顕著にそれらの影響を受ける.

2) いずれの間隙率の場合においても, せん断挙動は最大軸差応力を過ぎると徐々に軟化を示し, 軸ひずみが 50% に近付くと, 同程度の大きさの残留強度に落ち着く. 間隙率が低いほど軟化挙動は顕著になる.

3) 粘着力の温度 1 あたりの変化量と,背圧 1MPa あたりの変化量は異なる.MHの状態を表すパラメー ターLを定義し,Lを用いて粘着力を整理した.Lが増加するにつれ,粘着力は増加し,飽和度ごとに一義的な関 係が得られた.

4) 全ての MH 飽和度において,間隙率の低い方が粘着力は高い値を示している.このことから,密な試料ほど, 土粒子同士がより密着するため,少ない MH の量でも粒子間をより効率的に固結し,高い粘着力を示したと推察 される.

【謝辞】本研究は,経済産業省「MH開発促進事業・生産手法開発に関する研究開発」の一部として実施された. 記して謝意を表す次第である.

【参考文献】1)メタンハイドレート資源開発研究コンソーシアム: <u>http://www.mh21jap.an.gr.jp/jap.anese/index.html</u>2)米田純,兵動正幸, 中田幸男,吉本憲正,海老沼孝郎:深海底地盤を模擬したガスハイドレート堆積砂の三軸圧縮特性,地盤工学会中国支部論文報告集「地盤と建 設」,Vol.25 印刷中 3)Hyodo, M. Nakata, Y. Yoshimoto, N. Ebinuma, T.: Basic research of the mechanical behavior of methane hydrate-sediments mixture. Soils and Foundation, Vol. 45, No. 1, pp. 75-85, Feb. 2005.