広島大学	学生会員	○花本	尚子
広島大学	国際会員	土田	孝
広島大学	正会員	加納	誠二
広島大学	学生会員	十井豆	F 聡之

1.目的

広島県は風化花崗岩であるまさ土が広く分布している.まさ土 は風化の程度によっては細粒分を含む特殊土で降雨時の強度低下 が著しく,降雨時の土砂災害の危険性が高い.現在,豪雨時の自 然斜面の危険度評価は降雨時の雨量による指標だけで行われてい るが,実際は同じ雨量でも崩れる斜面と崩れない斜面が存在する. 危険度評価の精度を向上させるには,各斜面の地盤データを考慮 した危険度評価を行う必要がある.

これまでの研究により,軽量動的コーン貫入試験の貫入抵抗値 を用いて内部摩擦角と粘着力を求める強度定数推定法が提案され ている.しかし,提案法によって推定した強度定数が実際の地盤 の値と一致しない場合も報告されており,また降雨により飽和度 が上昇する過程における適用性も確認されていない.本研究は飽 和度上昇過程に着目し,室内模型地盤を用いた推定法の再検討お よび自然斜面への適用性についての検討を目的とする.

2.試験方法

降雨時の地盤の飽和度上昇過程における貫入抵抗の変化を調べ るため、以下の実験を行う.図2に示すように中心にプロファイ ル土壌水分計を設置した室内まさ土模型地盤を作成した.模型地 盤には広島大学構内にあるががら山で採取し、乾燥させ2mmふる いにかけたまさ土を使用し、所定の間隙比、飽和度になるように 締め固めた.初めに軽量動的コーン貫入試験機により注水前の貫 入抵抗値を測定した.その後、表層から降雨に相当する水を注水 し、プロファイル土壌水分計で飽和土の変動を測定した.次にそ の変化の過程において軽量動的コーン貫入試験を行い、飽和度上 昇と貫入抵抗値の変化について調べ、これを元に強度定数推定法

の再検討を行なった.室内試験の実験ケースを表1に示す.原位置においても,0.5m×0.5mの範囲で同様の試験を行い,室内試験との比較を行った.

ケースNo.	土槽高さ(cm)	間隙比	初期飽和度(%)	設定降雨強度(mm/hr)
No. 1	110	1.10	40	60
No.2	110	0.98	50	20
No.3	40	0.90	40	平均60mm/hr
No.4	50	0.80	50	30
No.5	50	0.78	50	30
No.6	50	0.75	50	30

表1 室内注水貫入試験実験ケース

(a) 貫入抵抗値と飽和度から間隙比を推定

(b)間隙比から内部摩擦角を推定

(c)間隙比と飽和度から粘着力を推定

図1 強度定数を推定するまでの流れ

概念図

3.室内試験結果と考察

図3はケースNo.3(間隙比 0.80,飽和度 50%、降雨 強度 30mm/hr)での地盤中の飽和度の経時変化を示す. また図4には同ケースでの貫入抵抗値の変化,図5に は貫入試験実施時の飽和度分布を示す.土槽上部より 水が供給されると,表層から飽和度 80~90%程度の高 含水比帯が形成され,その領域での貫入抵抗値は著し く低下したが,高含水比帯より下の領域では貫入抵抗 値に変化は見られなかった.さらに注水すると高含水 比帯内の飽和度は一定のまま,その領域は下へと拡大

していき,基盤に達すると今度は飽和 した領域が地下水位として下から上 へと上昇している.高含水比帯と飽和 した領域での貫入抵抗値はほぼ等し く,地下水位形成前の高含水比帯が形 成されている段階で地盤の貫入抵抗 値は著しく低下することが分かった. このことは地下水位の上昇前に斜面 崩壊の危険度が高まっていることを 示しており、土中水分の観測により、 より早く危険度予測が可能になる可 能性を示している.他の実験ケースに おいても同様の傾向が見られた.

4.原位置試験結果と考察

原位置試験は広島大学構内にあるががら山斜面3箇所 において実施した.図6は原位置において室内試験と同 様に注水後の地盤内の飽和度の経時変化を示す.注水後、 まず地表面に近い所から飽和度が上昇し始めた.深さ 5cmのデータを除いて考えると,15cm,25cm,35cmと 順に飽和度が上昇しており,室内試験の結果と対応して

いる. 深さ 25cm より深い地点での 飽和度上昇が低い値で止まってい るのは注水開始 30 分後に注水を止 めたためであり,その後も注水を継 続していれば,飽和度 80~90%付近 まで上昇すると考えられる.

図7に深さ方向の貫入抵抗値の変 化,図8に貫入試験実施時の深さ方 向の飽和度の変化を示す.飽和度が 上昇した、深度の浅い部分に着目す ると,注水前に比べ注水後は貫入抵

図4 貫入抵抗値(e=0.80)

qd (MPa)

2

図7 原位置貫入抵抗値

Ω

0

0.2

0.4

0.6

0.8

1

1.2

depth (m)

3

- 注水前

注水後

4

図5 飽和度分布(e=0.80)

図6 原位置飽和度変動

抗値が低下することが確認できた.この試験地点では,飽和度変動および飽和度上昇による貫入抵抗値の変化は 室内試験と同じような傾向が見られたが,他の試験地点では異なる結果が得られた場合もある.この原因として, 原位置では0.5m×0.5mの範囲に一様に水を浸透させることが難しいことや,貫入抵抗値がレキや根の影響を受け ていることが考えられる.

5.強度定数推定法の再検討と実斜面への適用 室内注水貫入試験の結果より得られた貫 入抵抗値と間隙比の関係を用いて提案され ている強度定数推定法の再検討を行った.既 往のデータと本研究の結果を比較すると,同 じ間隙比と飽和度でも本研究で得られた貫 入抵抗値は既往のデータより大きい値であ った.本研究では一度使用した試料を再利用 していることが原因の一つだと考えられる が,どちらの試料作成方法が実斜面に対応し ているかは明らかではない.しかし実斜面で は,間隙比,飽和度が同じ条件でも既往のデ

図9 補正した貫入抵抗値と間隙比の関係

0

0

0.2

0.4 E

0.8

1

1.2

₩06

2

ータよりも大きい貫入抵抗値が得られることが多いため、本研究のデータを追加し、貫入抵抗値と飽和度から間隙を推定する式を補正した.以下に補正前(式1)と補正後(式2)の推定式を示す.

補正前: $e=-0.09\ln(q_{d5})+(-0.0074Sr+1.13)$ 式(1) 補正後: $e=-0.084\ln(q_{d5})+(-0.0074Sr+1.19)$ 式(2)

また,図9には補正前を点線,補正後を実線で示している.

次に原位置試験結果から補正式の適用性を検討する.原位置の貫入抵抗値は レキ等の影響を取り除くため図 10 に示すように下限値を用い,間隙比はサン プリングにより求めた.これらを図 9 にプロットしたものを図 11 に示す.図 11 を見ると補正後の式の方が原位置試験の結果とよく対応している.

図 10 下限値

貫入抵抗值(MPa)

6

8

no 1

下限値

10

4

室内注水貫入試験結果から提案されてい る強度定数推定法を補正した.その結果と原 位置注水貫入試験の結果から,強度定数推定 法の実斜面へ適用性が向上したことが確認 できた.しかし,今回は原位置での試験点数 が少なかったので今後更に試験点数を増や し,適用性の検討を行う必要がある.

参考文献

 管和暁;軽量動的コーン貫入試験による自然ま さ土斜面の強度定数の評価,降雨時の斜面モニタ リング技術とリアルタイム崩壊予測に関するシン ポジウム発表論文,pp51-57,2006

図 11 原位置での貫入抵抗値と間隙比の関係