予圧密不飽和土の一軸圧縮強度特性

鳥取大学正会員 清水 正喜 鳥取大学大学院 学生会員 景山 健 寺方 淳治

1. はじめに

本研究の目的は不飽和土の一軸圧縮強度に及ぼすサクション,飽和度の影響を調べることである.これまでに,締め固めによって作製した供試体を対象にした ¹⁾が,締固めた供試体では,初期状態や結果の再現性がよくなかったため,結果の解釈が難しいという問題があった.

本研究では、締固めでなく、スラリー状の試料を 圧密した後にサクションを作用させて不飽和化する 方法(予圧密法という)によって、不飽和の供試体 を作製した.不飽和化時に作用させたサクションの 大きさを変えることにより飽和度の異なる供試体を 作製した.

本報告では応力 ひずみ・サクションの挙動を考察するとともに、 Bishop の有効応力および Fredlund らの強度式に基づいて、一軸圧縮強度を評価し、それらの一軸圧縮強度に対する適用性を検討する.

2. 試料および供試体作製方法

試料は DL クレーを用いた (表 1). 表中の NP は 非塑性であることを表す.

表 1 試料の物理的性質

土粒子密度(g/cm³)	2.701
液性限界w _L (%)	NP
塑性限界wp(%)	NP
シルト分(%)	86%
粘土分(%)	14%

供試体はスラリー状の試料を 1 次元的に予圧密した後,サクションを作用させて不飽和化した.

不飽和土用三軸セルペデスタルに円筒モールド (内径 35mm)を設置し、そこに含水比 60%で十分練り混ぜて脱気したスラリーを流し込んだ、次に、上面排水・底面非排水条件で圧密圧力を 49.2kPa まで段階的に載荷した。圧密終了後、8.8kPa まで除荷し、上面および底面排水条件で、セル圧と底面水圧を制御し、所定のサクションを作用させた(圧密圧力を5.7kPa に調整した).サクションの作用により供試体底面から排水し、供試体は不飽和になった。不飽和化終了後、供試体をペデスタル上に残して、モール

ドを取りはずし,一軸圧縮試験に移行した.

なお,モールド内周面にシリコンオイルを塗布した.これは,モールドを取りはずすときの供試体表面の乱れを防ぐためである.

3. 一軸圧縮試験方法

三軸セルを再度組み立て,底面非排水条件でセル 圧 σ_c (=100kPa)を作用させ,供試体底面の間隙水圧 を測定した.セル圧 σ_c (= u_a :間隙水圧)と測定した間 隙水圧 u_w から初期サクション s_θ (= u_a - u_w)を決定した。

その後,セル圧 100kPa を作用させた状態で,間隙水圧を測定しながら軸方向圧縮した.

4. 結果および考察

4.1 不飽和化過程

(1)排水举動

図 1 に不飽和化過程における排水挙動を示す.例 としてサクション 50kPa の場合と ,70kPa の場合を示す.

図より,高いサクションを作用させると全排水量が増え,排水が終了するまでに長時間を要することがわかる.

図1 不飽和化時の排水挙動

(2)サクションと飽和度,含水比,排水量の関係図 2 に不飽和化時に作用させたサクション (s_a と書く)と不飽和化終了時の飽和度 S_r ,含水比 w および排水量 ΔV_w との関係を示す.

図 2 より, s_a が 60kPa より小さいときは, S_r ,w, V_w の変動は小さいが, s_a が 60kPa を超えると s_a とともに V_w が増え,低含水状態に移行している.このことからこの試料の不飽和化直後の AEV(空気浸入値)は約 60kPa と判断できる.

図 2 サクションと飽和度 含水比 排水量の関係(不 飽和化終了時)

4.2 軸圧縮過程

両図より、挙動を 2 つのタイプに分けることができる $.s_a$ が 60kPa 以上の供試体は、サクションの変動が比較的小さく, q_u が大きい.一方 s_a が 55kPa 以下の供試体はサクションの変動が大きく, q_u も小さい.

図3より

せん断初期にサクションがほとんど変化しない 応力域があり、その応力域を過ぎるとサクションが 減少し始める.初期サクションが低いほどサクショ ンの減少が急で、減少量も大きい.図にサクション が減少し始める点を小さいマークで示している.

初期サクションの低いものは圧縮応力がピークに達する直前にサクションが一度少し増加するが, ピークを過ぎると再び減少することがわかる.

図4より

せん断初期に見られたサクション変化の小さい 応力域では,ひずみが小さく,それを超えるとひず みは大きくなる. 初期サクションが低いほど,上記の応力域を超えてから,ひずみの変化が急で,圧縮応力が最大になるまでのひずみが大きい.

図3 サクションと応力の関係

図 4 応力ひずみ関係

4.3 一軸圧縮強度に及ぼす影響要因

一軸圧縮強度 q_u に影響を及ぼす要因として,せん断前のサクションと飽和度を取り上げ q_u との関連性を調べる.

(1)初期サクション

図 5 に初期サクション s_0 と q_u の関係を示す . 図より s_0 が高いほど , q_u は大きくなる傾向が見られる .

(2)飽和度

図 6 にせん断開始時の飽和度 $S_{r\theta}$ と q_u の関係を示す.図より $S_{r\theta}$ が高いほど, q_u は低くなる傾向がある.しかし, $S_{r\theta}$ が 70% より低い場合, q_u の変動は小さく,一方, $S_{r\theta}$ が約 90% と高くなると,飽和度の変化による g_u の変動が大きい.

図 5 $s_0 \geq q_u$ の関係

図 6 S_{r0} と q_u の関係

4.4 一軸圧縮強度の理論的評価

(1)Bishop の有効応力に基づく評価

Bishop の有効応力に基づくと , q_u は次式で表される $^{1)}$

$$\frac{q_u}{S_{rf} s_f} = \frac{2 \sin \phi'_B}{1 - \sin \phi'_B} \tag{1}$$

ここに , ϕ'_B は Bishop の有効応力に関するせん断抵抗角 , 添え字の f は破壊時を意味する .

図 7 に ϕ'_B を 30° ~ 40° の範囲で変えたときの q_u と S_rS_f の理論的関係(直線)を示す.同時に実験値もプロットした.図より実験値に相当する ϕ'_B の値は, S_rS_f とともに大きくなる傾向が見られる. $\phi'_B = \phi'$ (ϕ' は飽和土の内部摩擦角)と仮定し,三軸圧縮試験から決定した $\phi'_B = 35$ °を適用すると,飽和度の高い試験は実験値をほぼ説明できるが,飽和度の低い試験では g_u を過小評価している.

(2)Fredlund らの強度式による評価

Fredlund らは次式で不飽和土のせん断強度 τ_f を評価することを提案している.

$$\tau_f = \sigma_{netf} \cdot \tan\phi + s_f \cdot \tan\phi^b \tag{2}$$

図7 Bishop の有効応力に基づく評価

図8 Fredlund の強度式による評価

 ϕ は飽和土の内部摩擦角, ϕ^b は σ_{netf} を一定としたときの τ_f に対する破壊時のサクション s_f の影響を表すパラメータである.応力円が上式の破壊包絡線に接すると仮定すると

$$q_u = \frac{2\cos\phi'}{1-\sin\phi'} s_f \cdot \tan\phi^b \tag{3}$$

という式が成り立つ $^{1)}$. この式は , ϕ^b が一定であれば , q_u が s_f の一次関数として表されていることを示している .

図 8 は実験値をプロットしたものである.図中の直線は飽和土の内部摩擦角 $\phi=35^\circ$ と,先に著者ら 20 が三軸試験から推定した ϕ^b の値(35.3°)を用いた,理論的な関係である(曲線は後述の方法で決定した近似曲線である).図より,理論直線は s_f が約 40kPaまでは実験値に近くなったが s_f がそれ以上になると,実験値を過大に評価する.

次に , ϕ^b のサクションの依存性について考察する . 式(3)より ,

$$\phi^b = \tan^{-1} \frac{q_u}{\left(\frac{2\cos\phi'}{1-\sin\phi'}\right) \cdot s_f} \tag{4}$$

この式から, q_u と s_f の実験値に対応する ϕ^b を求める ことができる.図9に s_f と ϕ の計算値との関係を示 す.図より s_f が大きくなるにつれ, ϕ^b の計算値は減 少していることがわかる.

図 10 は, s_f が最小となった結果($s_f=s_f=20$ kPa, $\phi^b = \phi_r^b = 30.9^\circ$) を基準として ϕ^b と s_f を正規化し, ϕ^b/ϕ^b_r と s_{ℓ}/s_{fr} の対数との関係を示したものである. 傾向からはずれた 1 つのプロットを除くと,次の直 線的な関係で近似できる.

$$\frac{\phi^b}{\phi_r^b} = a \log \left(\frac{s_f}{s_{fr}} \right) + 1 \quad (a \text{ は定数})$$
 (5)

図中に,上限と下限に相当するaの値,および, その平均値を示した .式(5)で決定した ϕ を用いて, 理論曲線を引くと図8の曲線のようになる.

5. 結論

(1)圧縮応力とサクション・ひずみの関係

応力 サクション・ひずみの挙動は圧縮中のサク ションの変動が大きいものと小さいものに分けるこ とができる、初期サクションの低いものは, サクシ ョンの変動が大きく,圧縮応力が最大になるまでの ひずみが大きい.一方,初期サクションの高いもの は,サクションの変動が小さく,圧縮応力が最大に なるまでのひずみが小さい.

また,初期サクションが高いものほど一軸圧縮強 度は大きくなる.

(2)強度特性

Bishop の有効応力に基づくと,飽和度の高い試験 は,実験値を評価できるが,飽和度の低い試験は, q_u を過小評価する.

Fredlund らの強度式では, ϕ を一定とすると実験 値を説明できない、幅広い飽和度の試験結果を説明 するためには $, \phi^b$ の s_f 依存性を考慮しなければなら ない.

参考文献:

- 1) 清水・柳瀬(2007):締固めた不飽和シルトの一軸 圧縮強度特性:粒子間垂直応力に基づく考察,土木 学会第62回年次学術講演会,
- 2) Shimizu, M., Sakamoto, S. and Nishioka, T. (2006): Effects of drainage conditions on the shear strength of unsaturated soil, Proc. 4th Int. Conf. On Unsaturated Soils, ASCE, STP147, pp.1223-1234

図 9 $s_f \geq \phi^b$ の関係

