1. はじめに

閉鎖性内湾では,夏季には水温成層が発達し,鉛直 混合が阻害されることにより底層が貧酸素化しやすい. 貧酸素化は,底泥の栄養塩や硫化物の溶出を促進し, 時として青潮や赤潮を引き起こす要因と考えられてい る.そのため,底層への酸素供給を目的として,電気 動力による曝気装置やマイクロバブル発生装置,重複 波による水面上昇を利用した鉛直循環流誘起型護岸な ども提案されるに到っている.

本研究では、やはりこのような内湾域の水質改善を 目的として、鉛直混合を促進する海洋施設の開発を目 指すもので、原動力として自然エネルギーである波エ ネルギーを活用する.すでに著者らは(佐伯ら,2007), 遊水室前面の鉛直版をくさび形構造として、非対称な 交番渦を発生させ、結果的に遊水室内に設けた鉛直通 水路内に一方向平均流の生成が可能であることを実験 的に明らかにしている.しかしながら、その一方向平 均流や垂下版下端より発生する渦流れに伴う水塊の鉛 直混合特性については十分明らかであるとはいえない.

そこで本研究では,理論解析により鉛直混合促進型 防波堤による鉛直混合特性について明らかにする.そ の際,消波効果および鉛直通水路に発生する一方向平 均流の特性について,水理模型実験(佐伯ら,2007) との比較によりその有効性も併せ検討する.

2. 数値計算

(1) 構造体および波浪条件

図-1 および表-1 は,計算に用いた構造体を示したものである.計算に用いた入射波の緒元は,入射波高 H=6cm (現地量でH=30cm),周期T=0.9~2.3s (現地量でT=2.0~5.1s)の範囲内で7種類の規則波とした.

(2) 数値計算の方法

(a) 減衰波理論

反射波・透過波の算定には、線形ポテンシャル波動 理論に基づく減衰波理論(中村ら,1997)を用いた. 理論算定では、等価線形抵抗係数 fc が必要となるが、 (株)荒谷建設コンサルタント 正会員 〇佐伯 信哉 愛媛大学大学院 正会員 中村 孝幸

実験結果との整合性を考慮してfc=0.15を用いた.

(b) Volume of Fluid (VOF) 法

波浪制御効果および鉛直混合効果の把握を目的とし て、VOF 法(沿岸開発技術センター,2001)も併せ検 討した.計算に用いた水路を図-2に示し,計算条件を 表-2に示した.計算は,静水状態から20s間造波し, 疑似定常状態を再現した.反射率の解析は,入・反射 波の分離推定法(合田ら,1976)により算定した.

表-1 模型堤体の構造緒元

形 状	$d_1(\text{cm})$	$d_2(\text{cm})$	$d_3(\text{cm})$	$h_1(\text{cm})$	h_2 cm)	<i>h</i> ₃ (cm)	d 1 /h 1	d_2/h_1	h 1/h
TYPE 1	10.0	16.5	13.0	23.0	40.0	25.0	0.43	0.72	0.36
TYPE 2	16.5	10.0	6.5				0.72	0.43	
TYPE 3	5.0	11.5	18.0				0.22	0.50	
TYPE 4	13.2	19.7	9.8				0.57	0.86	

図-2 計算に用いた水路の概要

表2	VOF	法の言	计算字	⊱件
-1	, 01	14 * / 14		~ 1.1

计符码试	長さ:x=9.0+4L(m)				
訂 昇限以	高さ:z=0.96(m)				
	x<2L+4.0(m)	∆ x=1.0cm			
枚フ眼回	$2L+4.0(m) \le x \le 2L+9.0(m)$ $\Delta x=0.56$				
俗丁间隔	x>2L+9.0(m) Δ x=1.0cm				
	0.0≦z≦0.96(m)	∆ z=0.5cm			
入射波条件	H=6(cm)				
(規則波)	T=0.90, 1.10, 1.35, 1.55, 1.70, 2.00, 2.30(s)				
水深	0.64(m)				
造波ソース	x=2L+1.0(m)				
培思冬州	sommerfeldの放射条件(数値水路両端)				
現外木什	エネルギー減衰帯(数値水路両端より2L)				
構造体設置位置	造波ソースより6.20(m)				
移流項	中央差分と風上差分の割合→8:2				
VOF関数F	フリー				
その他境界	スリップ				
気泡上昇速度	0.2(m/s)				
水滴落下速度	フリー				
造波時間	静止状態から20(sec)				
時間差分間隔	R定条件から決ま と時間				
	T/100				

3. 結果および考察

(1) 波浪制御効果

図-3 は、各模型堤体による反射率 Cr、透過率 Ct、 遊水室内波高増幅率 Hc/H (Hc;遊水室内波高)の周期 による変化を示したものである. 図中には、周期を表 すパラメータとして、L/Bc (波長遊水室幅比)を用い、 Cr、Ct については、減衰波理論および VOF 法に基づく 算定結果、Hc/H については VOF 法による算定結果およ び著者らによる水理模型実験結果も併せ示してある.

TYPE 1~3の模型堤体の反射率 Cr に着目すると,現 地波周期 T=3.0~3.5s 程度(*L/Bc*=11.0~13.5 程度) で Cr<0.4 であるなど反射波の低減効果が確認できる. 実験結果と算定結果の定性的な対応は,*L/Bc*=11.0~ 13.5 程度で極小値を示し,長周期側に移行するに従い やや反射率 Cr が増大するなど,減衰波理論および VOF

図-3 Cr, Ct, Hc/Hの実験結果と計算結果

法とも良好である.定量的には,VOF 法の対応は概ね 良好であるものの,短周期側で減衰波理論はやや反射 率を過小評価する傾向にある.これは,等価線形抵抗 係数 fc を過大評価していることが原因と考えられる. 一方,TYPE 4 の模型堤体の反射率 Cr の実験結果およ び算定結果は,対象波に対して Cr>0.4 となるなど,反 射波の低減効果が不十分である.

透過率 Ct に着目すると,実験結果と算定結果の対応 は概ね良好であり,目標周期に対しては Ct=0.2~0.4 程度である.

遊水室内の波高増幅率 Hc/H に着目すると,反射率 Cr が顕著に低減される周期付近から長周期側の広い 範囲において Hc/H>1 となり,遊水室内のピストンモ ード波浪共振は,没水平板に開口部を設けても発生す ることが確認できる.実験結果と VOF 法による算定結 果の対応は,概ね良好である.

(2) 鉛直通水路内に発生する平均流の特性

図-4は、各模型堤体による鉛直通水路における平均

流速 v を重力加速度 g と入射波高 H の積の平方根で除 した無次元平均流速 $q^* (q^*=v/(gH)^{1/2})$ を *L/Bc* による 変化で示したものである.

垂下版のくさび形状の違いによる無次元平均流速に 着目すると、右下がりくさび形垂下版(TYPE 1)では、 概ねどの周期帯に対しても下向き平均流速が発生する. しかしながら、右上がりくさび形(TYPE 2)では、短 周期側では上向き平均流速が発生しているものの、長 周期側に移行するに伴い、下向き平均流速に転じてお り特定方向への流速生成がなされない.

右下がりくさび形状の垂下版(TYPE 1, 3, 4)にお ける吃水深の影響に着目すると,垂下版吃水深に関係 なく安定的に下向き平均流速が発生している.特に, 垂下版吃水深を浅くした TYPE 3 の場合では,短周期側 より安定した下向き平均流速が生成される.

実験結果と VOF 法による計算結果の対応は,定性的 には平均流速の方向の再現性を含め非常に良好である. しかしながら,定量的には実験結果をやや過小評価す る傾向にある.

(3) 堤体まわりの流況

VOF 法による計算結果の一例として,波高 H=6cm, 周期 T=1.55s の波条件における堤体 (TYPE 3) まわり の流況を示したのが,図-5 である.これらの図では, 造波開始後 15.5s から代表的な水面状態における水表 面および無次元流速ベクトルw*を示してあり,w*は式 (1)により定義した.

$$w^* = \sqrt{u^{*2} + v^{*2}}, \quad u^* = \sqrt{u/gH}, \quad v^* = \sqrt{v/gH}$$
(1)

ここに, *u*, *v*; *x*, *z*方向流速, *g*; 重力加速度, *H*; 入射波高である.

VOF 法による計算結果は、水理模型実験にて確認さ

図-6 堤体まわりの無次元平均流速強度 w*の計算結果(T=1.55s, VOF法)

れた遊水室内におけるピストンモード波浪共振や没水 平版下面における時計回りの循環流が再現されている. 水理模型実験および VOF 法による計算結果より,垂下 版を右下がりくさび形構造にすることにより,遊水室 内への水塊流入を容易にすると伴に,垂下版下端から の水塊流出を抑制することにより,非対称な交番渦が 発生する.結果的に,鉛直通水路に下向きの流速が発 生し,没水平板下側に時計回りの循環流が生じる.そ して,その外縁端で底層よりの上昇流が発生すること により,鉛直混合が促進されることが確認された.

図-6 は、各構造体における堤体まわりの無次元平均 流速強度 $\overline{w^*}$ (式(1)において、1周期間における平均 流速 \overline{u} 、 \overline{v} を用いる)の計算結果を示したものである.

まず,垂下版のくさび形状の違いに着目する.右下 がりくさび形垂下版(TYPE 1)は,遊水室内への水塊 流入を容易にすることにより,鉛直通水路に下向き平 均流を発生させ,結果的に没水平版下面における循環 流の流速強度が大きくなる.右上がりくさび形(TYPE 2)では,遊水室内からの水塊流出を容易にすることに より,構造体沖側での渦流れの形成に伴い,それに起 因する鉛直循環流の発生が見られる.

次に、右下がりくさび形状の垂下版(TYPE 1, 3, 4) による吃水深の影響に着目すると、鉛直通水路におけ る平均流速の絶対値に加え、図には示してないがその 流速振幅の絶対値も,鉛直循環流の規模や強度を支配 する要因であることが示唆された.

4. 結語

きた.

 鉛直混合促進型防波堤の波浪変形特性は、概ね減衰 波理論および VOF 法により推定することができ、有効 な反射および透過波の低減効果が期待できる。
水理模型実験との比較により、VOF 法は堤体回りの 流況を概ね再現可能であり、垂下版形状の違いや吃水 深の違いによる鉛直混合効果が異なることが再確認で

参考文献

佐伯信哉・中村孝幸(2007):遊水室内の波浪共振を利 用した鉛直混合促進型防波堤の開発,海岸工学論文集, 第 54 巻, pp. 1241-1245.

中村孝幸・井手善彦(1997):波の逸散現象を考慮し た隅角物体まわりの波変形と作用波力の算定法,海洋 開発論文集,第 13巻, pp. 177-182.

沿岸開発技術研究センター(2001):数値波動水路の研 究・開発,沿岸開発技術ライブラリー,No.12.

合田良美 ・鈴木康正・岸良安治・菊池治(1976) : 不 規則波実験における入・反射波の分離推定法,港湾技 研資料, No. 278, pp. 3-24.