ウェーブレット解析を用いた橋梁模型桁の損傷判定

山口大学大学院	学生会員	岡田典泰	(株)構造計画	正会員	矢部明人
山口大学大学院	正会員	三村陽一	山口大学大学院	フェロー会員	宮本文穂

1. 背景と目的

現在,高度成長期に建設された多くの橋梁で老朽化が 進み,効率的な維持管理が必要とされている.そこで現 在,センサを用いて橋梁の損傷状態を把握できるヘルス モニタリングシステムに注目が集まっている.

本研究では,橋梁の損傷状態を評価するために,橋梁 模型桁を用い,振動実験を行った.計測した橋梁の加速 度データにはウェーブレット解析を適用することで,卓 越振動数の減衰について定量的評価を行った.

2. 橋梁ヘルスモニタリング

橋梁ヘルスモニタリングとは,橋梁にセンサを設置し, モニタリングすることで,損傷状態を把握する技術であ る.本研究は,橋梁の一部の損傷状態を,客観的に判断 することを目的とし,振動の加速度を解析することで損 傷判定を行った.加速度を計測する理由は,計測データ そのものが絶対量であることから,相対量等の抽出がな く,比較的少数のセンサの配置により低コストで橋梁全 体の損傷状態を把握できるからである.損傷状態の評価 を行うためには健全状態と損傷状態の両方の加速度デー タが必要である.

3. 橋梁模型桁を用いた実験

本研究では,橋梁の損傷状態の判定を定量的に行うため,健全状態と損傷状態における桁の組み換えが可能な, 橋梁模型桁を用いて振動実験を行った.

実験の流れを図1に示す.

図1 実験の流れ

振動実験は,模型桁をインパクトハンマーで打撃し,模型桁に取り付けた加速度センサによってデータを取得するという流れになっている.模型桁における損傷状態は図2,図3,図4のように,主桁の一部が欠けている状態で再現しており,損傷無し,損傷小,損傷大の3パターンについて検討を行った.橋梁模型桁の場所名称図については図5に示す.本研究では,打撃位置B1,B2,B3,C1,C2,C3,計測位置acc1,acc2,acc3,acc4,acc5,acc6,acc10において検討を行った.また損傷位置はC3のみとした.

図4 損傷大

図2 損傷無し

図3損傷小

図5 橋梁模型桁場所名称図

4. ウェーブレット解析による検証

ウェーブレット解析とは,周波数及び時間の両者の分 解能を兼ねた解析法であり,振動のように時間と共に変 化するデータを解析するためには有効な解析法である. 本研究では,模型桁による振動実験で得た加速度データ にウェーブレット解析を適用した.図6,図7はそれぞ れ得られた加速度データとそれをウェーブレット解析し たものであり,図8,図9は打撃位置 B2,計測位置 acc5の健全状態と損傷大状態を比較したものである.ウ ェーブレット解析したデータは縦軸に周波数(Hz),横軸 に時間(s),色の濃度がスカログラムとなっている.スカ ログラムとは,振動データをウェーブレット変換した2 乗絶対値のことであり,周波数毎の振動の強さを示す.

解析データを見ると,30Hz 付近と 115Hz 付近に周波数 が卓越が確認できた.それぞれの卓越周波数を 1-1 次モ ード,2-1 次モードと呼ぶこととした.また,図 10,図 11 にそれぞれ 1-1 次モード,2-1 次モードにおける時間 経過に伴ったスカログラムの過程を示した.この図から, 1-1 次モードと 2-1 次モードでは異なった結果が検出さ れ,損傷の有無で卓越周波数におけるスカログラムの減 衰過程に規則的な差異が見られた.このスカログラムの

傾きを客観的な数値で表すため,指数関数 $y = e^{at}$ と

なる式で近似した.その*a*をスカログラムの傾きとして 定義し,各センサにおける*a*について検証を行った.

図 10 時間経過に伴うスカログラム (1-1 次モード)

図 11 時間経過に伴うスカログラム (2-1 次モード)

5. まとめ

1-1 次モードにおける結果は,図 12 に示す C1 打撃時の acc4 計測した場合と,C3 打撃時の acc3 計測した場合の2 つを除き,減衰の傾きは損傷小の場合が最小,損傷 大の場合が最大となった.また,図 12 の acc4 のように 比較的 *a* が小さくなる場合が見受けられ,合わせて6パターン見つかったが,これは全て計測位置が打撃位置も しくは打撃位置に隣接した場所であることが分かった. このような結果から,打撃位置付近では減衰過程に影響 が出る結果となった.

2-1 次モードにおける結果は,図 13 に示す B3 打撃時 の acc3 計測した場合を除き減衰の傾きは損傷無しが最 小となった.しかし,損傷小と損傷大の減衰の大小関係 を明確に判別することは難しいと考えられる.1-1 次モ ードと比較する上で,高次モードでは健全時と損傷時の 減衰の傾きに差がつきやすい反面,打撃位置付近での影 響が大きい結果を得た.

結果として,特定の固有振動数を対象としたスカログ ラムの傾きを求めることによって,損傷度合を評価する 可能性を示すことができたと考えられる.

図 13 各センサの a の値 (打撃 B3 2-1 次モード)

参考文献

 ウェーブレット解析を応用した構造物周辺の地盤空 洞調査,応用地質,Vol.38,No.6,pp.349-358,1998