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1. Introduction

Fluid flow and storage take place in the voids of soils and rocks. However, very small pore spaces and pore throats are not
available for fluid flow. The porosity that is available for fluid flow is referred to as effective porosity (n.). In unsaturated
aquifers, effective porosity is an important parameter in the estimation of the storage capacity of underground dams and how
much groundwater can be pumped out in order to refresh the stored groundwater. Effective porosity is an important parameter
in the estimation of groundwater velocity, saturated hydraulic conductivity and contaminant transport modeling (Flint and
Selker, 2003; Gehlin and Hellstrom, 2003; Suleiman and Ritchie, 2001; Timlin et al., 1999; Hudak, 1995; Helalia, 1993; Bair
et al., 1991; Hall et al., 1991). Due to its importance, several methods have been developed to determine n, but under saturated
soil and rock conditions. These include mercury intrusion porosimetry, mixing models, tracer tests and field pumping tests
(Andriani and Walsh, 2002; Kong and Li, 2001; Yeh et al., 2000; Stephens et al., 1998; Ii et al., 1996; Novakowski et al., 1996).
Using the Frequency Domain Reflectometer (FDR) method, Nishigaki et al (2003) have carried out extensive tests on real-time
determinations of n, in saturated sand columns in the laboratory and have found the method to be very reliable. Under
unsaturated conditions, however, methods for determining #, are not well developed. Such methods are especially needed in
studies on underground dam storage conditions which occur under unsaturated conditions in unconfined aquifers. This study
proposes a constant flow rate injection method for determining the effective porosity of unsaturated river sand in the laboratory

2. Mathematical formulation

Under constant flow rate conditions, the relationship
between flux (g,), permeation front, L, and effective
porosity (ne), and is given by:

qot = Lyyn, M

The boundary conditions are:
x=0:h=hy,; x=L,: h=h, )

where, hyq) = pressure head at time ¢ and A, = intial critical
pressure head. Integrating Equation (6):
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The slope, M, of graph L, - ¢ (Fig 1) is given as: and substituting (2) into (9): 5
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The slope, M,, of graph A, - ¢ (Fig 2) is given as:
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Figure 1. Progression of permeation front Therefore, k = ' M 13)
n, 2
From Darcy’s equation 3. Laboratory tests
) ah To evaluate the validity of the above mathematical
ve=-—ki=-k— (%) models, constant flow rate injection tests were carried out on
x River sand in horizontal columns in the laboratory. The

where v = k = permeability coefficient and { = hydraulic

. e ' normal porosity and degree of saturation of the River sand
gradient) and from the continuity equation Q = v A (where

were 0.4 and 8 %, respectively. The particle size distribution

Q = flow rate; v = flow velocity and A = flow section):
oh
6
e (6)

g, = —k

of the River sand was as shown in Fig. 3. Three (3) levels of
viscousity of injection fluid were used, viz: y = 1, 44.9 and
88.8, respectively. Figure 4 shows the experimental set-up.
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Figure 3. Particle size distribution of River sand

Figure 4. Experimental set-up

4. Results and Discussion

Table 1 shows the summary of the results obtained from
the laboratory tests. The average effective porosity (n.)
ranged from 0.24 to 0.31, with increasing viscousity. These
were 60-93 % of the normal porosity. In similar tests at
constant injection pressure, the corresponding effective
porosities were 0.19 and 0.26. Nishigaki et al (2003)
obtained effective porosity values of 0.27-0.34 in a

comparative  study using the Frequency Domain
Reflectometer systems.
Table 1 Laboratory results
Test | p(mPa *s) Q (em’ls) A (em?) qo (cm/s) M; M, n, k (cm/s) neln Av. n.
1-1 1 2.68 21.24 0.126 0.54 2.17 0.23 3.13E-2 0.59
1-2 1 2.68 21.24 0.126 0.51 1.84 0.25 3.50E-2 0.62 0.24
1-3 1 2.68 21.24 0.126 0.51 1.96 0.25 3.25E-2 0.62
2-1 449 2.66 21.24 0.125 0.44 32.19 0.29 1.69E-3 0.72
2-2 44.9 2.66 21.24 0.125 0.43 36.52 0.29 1.46E-3 0.73 02
3-1 88.8 2.65 21.24 0.125 0.59 86.40 0.21 8.56E-4 0.53 031
32 88.8 2.65 21.24 0.125 0.34 83.73 0.37 5.03E-4 0.92
3-3 88.8 2.65 21.24 0.125 0.36 89.89 0.35 4.98E-4 0.87

5. Conclusion

In this paper, we have proposed a new method of
constant flow rate injection for determining the effective
porosity of a porous media under unsaturated conditions in
the laboratory. For River sand, with porosity (#) of 0.4 and
8 % saturation, the average n, varied from 0.24 to 0.31, with
increasing viscuosity. These results compared favourably
with those obtained by other workers. Further research work
on the proposed method is on-going.
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